Levenberg-Marquardt Variants in Chrominance-Based Skin Tissue Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015941" target="_blank" >RIV/62690094:18450/19:50015941 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-17935-9_9" target="_blank" >http://dx.doi.org/10.1007/978-3-030-17935-9_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-17935-9_9" target="_blank" >10.1007/978-3-030-17935-9_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Levenberg-Marquardt Variants in Chrominance-Based Skin Tissue Detection
Popis výsledku v původním jazyce
Levenberg-Marquardt method is a very useful tool for solving nonlinear curve fitting problems; while it is also a very promising alternative of weight adjustment in feed forward neural networks. Forcing the Hessian matrix to stay positive definite, the parameter λ also turns the algorithm into the well-known variations: steepest-descent and Gauss-Newton. Given the computation time, the results achieved by these methods surely differ while minimizing the sum of squares of errors and with an acceptable accuracy rate in skin tissue recognition. Therefore in this paper, we propose the implementation of these variations in network training by a set of tissue samples borrowed from SFA human skin database. The RGB images taken from the set are converted into YCbCr color space and the networks are individually trained by these methods to create weight arrays minimizing the error squares between the pixel values and the function output. Consisting of hands on computer keyboards, the images are analyzed to find skin tissues for achieving high accuracy with low computation time and for comparison of the methods.
Název v anglickém jazyce
Levenberg-Marquardt Variants in Chrominance-Based Skin Tissue Detection
Popis výsledku anglicky
Levenberg-Marquardt method is a very useful tool for solving nonlinear curve fitting problems; while it is also a very promising alternative of weight adjustment in feed forward neural networks. Forcing the Hessian matrix to stay positive definite, the parameter λ also turns the algorithm into the well-known variations: steepest-descent and Gauss-Newton. Given the computation time, the results achieved by these methods surely differ while minimizing the sum of squares of errors and with an acceptable accuracy rate in skin tissue recognition. Therefore in this paper, we propose the implementation of these variations in network training by a set of tissue samples borrowed from SFA human skin database. The RGB images taken from the set are converted into YCbCr color space and the networks are individually trained by these methods to create weight arrays minimizing the error squares between the pixel values and the function output. Consisting of hands on computer keyboards, the images are analyzed to find skin tissues for achieving high accuracy with low computation time and for comparison of the methods.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-030-17934-2
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
87-98
Název nakladatele
Springer Verlag
Místo vydání
Berlin
Místo konání akce
Granada
Datum konání akce
8. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—