Dynamics of a new generalized fractional one-dimensional map: quasiperiodic to chaotic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F18%3A50014729" target="_blank" >RIV/62690094:18450/18:50014729 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11071-018-4430-8" target="_blank" >http://dx.doi.org/10.1007/s11071-018-4430-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11071-018-4430-8" target="_blank" >10.1007/s11071-018-4430-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamics of a new generalized fractional one-dimensional map: quasiperiodic to chaotic
Popis výsledku v původním jazyce
Discovering new chaotic maps is always essential for secure communication, cryptography, image encryption and decryption when pseudo-number generation is mandatory; however, it is still very fascinating to come across new complex dynamics of very simple maps exhibiting chaotic behavior. Despite the various forms already presented in the literature, we deal with the fractional forms of one-dimensional chaotic map with one system parameter; yet while generalization, two parameters were inserted to the map as the multiplier and the power. Therefore, in this paper, we present a novel and generalized version of a map exhibiting a strange behavior in discrete time and real number space, while detailed analyses regarding the new map with intervals of various parameters are also included. We mainly focus on a simple one-dimensional chaotic map and propose various instances with linear stability, bifurcation and Lyapunov analyses for each instance, to enhance the understanding of unstable fractional chaotic maps. It is found that the fractional map exhibits quasiperiodicity as well as periodic behavior for the smallest power parameter; while the chaotic states emerge for larger values.
Název v anglickém jazyce
Dynamics of a new generalized fractional one-dimensional map: quasiperiodic to chaotic
Popis výsledku anglicky
Discovering new chaotic maps is always essential for secure communication, cryptography, image encryption and decryption when pseudo-number generation is mandatory; however, it is still very fascinating to come across new complex dynamics of very simple maps exhibiting chaotic behavior. Despite the various forms already presented in the literature, we deal with the fractional forms of one-dimensional chaotic map with one system parameter; yet while generalization, two parameters were inserted to the map as the multiplier and the power. Therefore, in this paper, we present a novel and generalized version of a map exhibiting a strange behavior in discrete time and real number space, while detailed analyses regarding the new map with intervals of various parameters are also included. We mainly focus on a simple one-dimensional chaotic map and propose various instances with linear stability, bifurcation and Lyapunov analyses for each instance, to enhance the understanding of unstable fractional chaotic maps. It is found that the fractional map exhibits quasiperiodicity as well as periodic behavior for the smallest power parameter; while the chaotic states emerge for larger values.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nonlinear dynamics
ISSN
0924-090X
e-ISSN
—
Svazek periodika
94
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
1377-1390
Kód UT WoS článku
000445930300039
EID výsledku v databázi Scopus
2-s2.0-85049074328