A new chaotic map derived from the Hermite-Kronecker-Brioschi characterization of the Bring-Jerrard quintic form
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020626" target="_blank" >RIV/62690094:18450/23:50020626 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1402-4896/acef6f" target="_blank" >https://iopscience.iop.org/article/10.1088/1402-4896/acef6f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1402-4896/acef6f" target="_blank" >10.1088/1402-4896/acef6f</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A new chaotic map derived from the Hermite-Kronecker-Brioschi characterization of the Bring-Jerrard quintic form
Popis výsledku v původním jazyce
The Bring-Jerrard normal form, achieved by Tschirnhaus transformation of a regular quintic, is a reduced type of the general quintic equation with quartic, cubic and quadratic terms omitted. However, the form itself is an equation opposing the mandatory characteristics of the iterative chaotic maps. Given the form represents the fixed-point equations, it is possible to turn it into a map of iterations. Under specific conditions, the quartic map achieved by transformation from the quintic normal form exhibits chaotic behavior for real numbers. Depending on the system parameters, the new map causes period-doubling until a complete chaos within a very short range. Basically, in this paper, we present a new one-dimensional chaotic map derived from the Hermite-Kronecker-Brioschi characterization of the Bring-Jerrard normal form, which exhibits chaotic behavior for negative initial points. We also included the brief analysis of the Bring-Jerrard generalized case which is the parent system of the chaotic map we proposed in this paper. © 2023 IOP Publishing Ltd.
Název v anglickém jazyce
A new chaotic map derived from the Hermite-Kronecker-Brioschi characterization of the Bring-Jerrard quintic form
Popis výsledku anglicky
The Bring-Jerrard normal form, achieved by Tschirnhaus transformation of a regular quintic, is a reduced type of the general quintic equation with quartic, cubic and quadratic terms omitted. However, the form itself is an equation opposing the mandatory characteristics of the iterative chaotic maps. Given the form represents the fixed-point equations, it is possible to turn it into a map of iterations. Under specific conditions, the quartic map achieved by transformation from the quintic normal form exhibits chaotic behavior for real numbers. Depending on the system parameters, the new map causes period-doubling until a complete chaos within a very short range. Basically, in this paper, we present a new one-dimensional chaotic map derived from the Hermite-Kronecker-Brioschi characterization of the Bring-Jerrard normal form, which exhibits chaotic behavior for negative initial points. We also included the brief analysis of the Bring-Jerrard generalized case which is the parent system of the chaotic map we proposed in this paper. © 2023 IOP Publishing Ltd.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica scripta
ISSN
0031-8949
e-ISSN
1402-4896
Svazek periodika
98
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
"Article number: 095245"
Kód UT WoS článku
001053340300001
EID výsledku v databázi Scopus
2-s2.0-85169618925