Biometric touchstroke authentication by fuzzy proximity of touch locations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F18%3A50014730" target="_blank" >RIV/62690094:18450/18:50014730 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167739X17326055" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167739X17326055</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.future.2018.03.030" target="_blank" >10.1016/j.future.2018.03.030</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Biometric touchstroke authentication by fuzzy proximity of touch locations
Popis výsledku v původním jazyce
Advancing touchscreen technologies lead to deployment of biometric passwords that could provide an additional security layer, therefore the presence of a secondary and hidden ghost password could restrain incoming fraud attacks even if the main password is stolen. Apart from the traditional keystroke methods dealing with the inter-key times, on-screen keyboards potentially have new features to extract. Provided that the touchscreen devices capture the touch locations, the users could intentionally create and save a ghost password by touching the predefined regions of the keys in enrollment session. However, while logging in, it is not easy to touch exactly the same points compared to the coordinates saved in enrollment; touching closer coordinates in each attempt is still possible though. From this viewpoint, we introduce a fuzzy classifier with the mathematical foundations of fuzzy proximity and inference for a novel location-based authentication system running on an emulated on-screen keyboard. We mainly focused on extracting the global coordinates that the user is touching in the two-step enrollment, which is so common in conventional registration interfaces. As the main classifier, a fuzzy inference system is implemented with proximity control of the touches for registration and login sessions. The results of the classification procedure are greatly encouraging that only one of sixty four fraud attacks was inadvertently granted; while the false reject rate is 0% and the false accept rate is 1.56% with the equal error rate is 1.61% which indeed represents one of the lowest among the classifiers introduced before (C) 2018 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Biometric touchstroke authentication by fuzzy proximity of touch locations
Popis výsledku anglicky
Advancing touchscreen technologies lead to deployment of biometric passwords that could provide an additional security layer, therefore the presence of a secondary and hidden ghost password could restrain incoming fraud attacks even if the main password is stolen. Apart from the traditional keystroke methods dealing with the inter-key times, on-screen keyboards potentially have new features to extract. Provided that the touchscreen devices capture the touch locations, the users could intentionally create and save a ghost password by touching the predefined regions of the keys in enrollment session. However, while logging in, it is not easy to touch exactly the same points compared to the coordinates saved in enrollment; touching closer coordinates in each attempt is still possible though. From this viewpoint, we introduce a fuzzy classifier with the mathematical foundations of fuzzy proximity and inference for a novel location-based authentication system running on an emulated on-screen keyboard. We mainly focused on extracting the global coordinates that the user is touching in the two-step enrollment, which is so common in conventional registration interfaces. As the main classifier, a fuzzy inference system is implemented with proximity control of the touches for registration and login sessions. The results of the classification procedure are greatly encouraging that only one of sixty four fraud attacks was inadvertently granted; while the false reject rate is 0% and the false accept rate is 1.56% with the equal error rate is 1.61% which indeed represents one of the lowest among the classifiers introduced before (C) 2018 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE
ISSN
0167-739X
e-ISSN
—
Svazek periodika
86
Číslo periodika v rámci svazku
SEPTEMBER
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
71-80
Kód UT WoS článku
000437555800007
EID výsledku v databázi Scopus
2-s2.0-85044443578