Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Biometric touchstroke authentication by fuzzy proximity of touch locations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F18%3A50014730" target="_blank" >RIV/62690094:18450/18:50014730 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0167739X17326055" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167739X17326055</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.future.2018.03.030" target="_blank" >10.1016/j.future.2018.03.030</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Biometric touchstroke authentication by fuzzy proximity of touch locations

  • Popis výsledku v původním jazyce

    Advancing touchscreen technologies lead to deployment of biometric passwords that could provide an additional security layer, therefore the presence of a secondary and hidden ghost password could restrain incoming fraud attacks even if the main password is stolen. Apart from the traditional keystroke methods dealing with the inter-key times, on-screen keyboards potentially have new features to extract. Provided that the touchscreen devices capture the touch locations, the users could intentionally create and save a ghost password by touching the predefined regions of the keys in enrollment session. However, while logging in, it is not easy to touch exactly the same points compared to the coordinates saved in enrollment; touching closer coordinates in each attempt is still possible though. From this viewpoint, we introduce a fuzzy classifier with the mathematical foundations of fuzzy proximity and inference for a novel location-based authentication system running on an emulated on-screen keyboard. We mainly focused on extracting the global coordinates that the user is touching in the two-step enrollment, which is so common in conventional registration interfaces. As the main classifier, a fuzzy inference system is implemented with proximity control of the touches for registration and login sessions. The results of the classification procedure are greatly encouraging that only one of sixty four fraud attacks was inadvertently granted; while the false reject rate is 0% and the false accept rate is 1.56% with the equal error rate is 1.61% which indeed represents one of the lowest among the classifiers introduced before (C) 2018 Elsevier B.V. All rights reserved.

  • Název v anglickém jazyce

    Biometric touchstroke authentication by fuzzy proximity of touch locations

  • Popis výsledku anglicky

    Advancing touchscreen technologies lead to deployment of biometric passwords that could provide an additional security layer, therefore the presence of a secondary and hidden ghost password could restrain incoming fraud attacks even if the main password is stolen. Apart from the traditional keystroke methods dealing with the inter-key times, on-screen keyboards potentially have new features to extract. Provided that the touchscreen devices capture the touch locations, the users could intentionally create and save a ghost password by touching the predefined regions of the keys in enrollment session. However, while logging in, it is not easy to touch exactly the same points compared to the coordinates saved in enrollment; touching closer coordinates in each attempt is still possible though. From this viewpoint, we introduce a fuzzy classifier with the mathematical foundations of fuzzy proximity and inference for a novel location-based authentication system running on an emulated on-screen keyboard. We mainly focused on extracting the global coordinates that the user is touching in the two-step enrollment, which is so common in conventional registration interfaces. As the main classifier, a fuzzy inference system is implemented with proximity control of the touches for registration and login sessions. The results of the classification procedure are greatly encouraging that only one of sixty four fraud attacks was inadvertently granted; while the false reject rate is 0% and the false accept rate is 1.56% with the equal error rate is 1.61% which indeed represents one of the lowest among the classifiers introduced before (C) 2018 Elsevier B.V. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE

  • ISSN

    0167-739X

  • e-ISSN

  • Svazek periodika

    86

  • Číslo periodika v rámci svazku

    SEPTEMBER

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

    71-80

  • Kód UT WoS článku

    000437555800007

  • EID výsledku v databázi Scopus

    2-s2.0-85044443578