Intelligent biometric pattern password authentication systems for touchscreens
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F15%3A50003813" target="_blank" >RIV/62690094:18450/15:50003813 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0957417415002948" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0957417415002948</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2015.04.052" target="_blank" >10.1016/j.eswa.2015.04.052</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intelligent biometric pattern password authentication systems for touchscreens
Popis výsledku v původním jazyce
Given the recent developments in alternative authentication interfaces for smartphones, tablets and touchscreen laptops, one of the mostly selected method is the pattern passwords. Basically, the users that prefer this method, draw a pattern between thenodes to open the lock in lieu of entering an alphanumeric password. Although drawing a pattern seems easier than typing a password, it has a major security drawback since it can be very easy to be stolen. Therefore, this paper proposes some novel theoretical ideas with artificial intelligence methods, to improve security of pattern password authentication, using touching durations as biometric traits. What we put forward is the utilization of three different neural network based algorithms to verify logins with one novel histogram-based technique in a hidden interface for enrollment, training and verification. Inspired by the keystroke recognition models, the touch time and durations are extracted to create a ghost password. Moreover,
Název v anglickém jazyce
Intelligent biometric pattern password authentication systems for touchscreens
Popis výsledku anglicky
Given the recent developments in alternative authentication interfaces for smartphones, tablets and touchscreen laptops, one of the mostly selected method is the pattern passwords. Basically, the users that prefer this method, draw a pattern between thenodes to open the lock in lieu of entering an alphanumeric password. Although drawing a pattern seems easier than typing a password, it has a major security drawback since it can be very easy to be stolen. Therefore, this paper proposes some novel theoretical ideas with artificial intelligence methods, to improve security of pattern password authentication, using touching durations as biometric traits. What we put forward is the utilization of three different neural network based algorithms to verify logins with one novel histogram-based technique in a hidden interface for enrollment, training and verification. Inspired by the keystroke recognition models, the touch time and durations are extracted to create a ghost password. Moreover,
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert systems with applications
ISSN
0957-4174
e-ISSN
—
Svazek periodika
42
Číslo periodika v rámci svazku
17-18
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
6286-6294
Kód UT WoS článku
000356122000002
EID výsledku v databázi Scopus
—