Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hybrid sentiment classification on twitter aspect-based sentiment analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F18%3A50014741" target="_blank" >RIV/62690094:18450/18:50014741 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s10489-017-1098-6" target="_blank" >http://dx.doi.org/10.1007/s10489-017-1098-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10489-017-1098-6" target="_blank" >10.1007/s10489-017-1098-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hybrid sentiment classification on twitter aspect-based sentiment analysis

  • Popis výsledku v původním jazyce

    Social media sites and applications, including Facebook, YouTube, Twitter and blogs, have become major social media attractions today. The huge amount of information from this medium has become an attractive resource for organisations to monitor the opinions of users, and therefore, it is receiving a lot of attention in the field of sentiment analysis. Early work on sentiment analysis approached this problem at a document-level, where the overall sentiment was identified, rather than the details of the sentiment. This research took into account the use of an aspect-based sentiment analysis on Twitter in order to perform a finer-grained analysis. A new hybrid sentiment classification for Twitter is proposed by embedding a feature selection method. A comparison of the accuracy of the classification by the principal component analysis (PCA), latent semantic analysis (LSA), and random projection (RP) feature selection methods are presented in this paper. Furthermore, the hybrid sentiment classification was validated using Twitter datasets to represent different domains, and the evaluation with different classification algorithms also demonstrated that the new hybrid approach produced meaningful results. The implementations showed that the new hybrid sentiment classification was able to improve the accuracy performance from the existing baseline sentiment classification methods by 76.55, 71.62 and 74.24%, respectively.

  • Název v anglickém jazyce

    Hybrid sentiment classification on twitter aspect-based sentiment analysis

  • Popis výsledku anglicky

    Social media sites and applications, including Facebook, YouTube, Twitter and blogs, have become major social media attractions today. The huge amount of information from this medium has become an attractive resource for organisations to monitor the opinions of users, and therefore, it is receiving a lot of attention in the field of sentiment analysis. Early work on sentiment analysis approached this problem at a document-level, where the overall sentiment was identified, rather than the details of the sentiment. This research took into account the use of an aspect-based sentiment analysis on Twitter in order to perform a finer-grained analysis. A new hybrid sentiment classification for Twitter is proposed by embedding a feature selection method. A comparison of the accuracy of the classification by the principal component analysis (PCA), latent semantic analysis (LSA), and random projection (RP) feature selection methods are presented in this paper. Furthermore, the hybrid sentiment classification was validated using Twitter datasets to represent different domains, and the evaluation with different classification algorithms also demonstrated that the new hybrid approach produced meaningful results. The implementations showed that the new hybrid sentiment classification was able to improve the accuracy performance from the existing baseline sentiment classification methods by 76.55, 71.62 and 74.24%, respectively.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    APPLIED INTELLIGENCE

  • ISSN

    0924-669X

  • e-ISSN

  • Svazek periodika

    48

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    15

  • Strana od-do

    1218-1232

  • Kód UT WoS článku

    000429401100011

  • EID výsledku v databázi Scopus

    2-s2.0-85037730962