Hybrid sentiment classification on twitter aspect-based sentiment analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F18%3A50014741" target="_blank" >RIV/62690094:18450/18:50014741 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10489-017-1098-6" target="_blank" >http://dx.doi.org/10.1007/s10489-017-1098-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10489-017-1098-6" target="_blank" >10.1007/s10489-017-1098-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid sentiment classification on twitter aspect-based sentiment analysis
Popis výsledku v původním jazyce
Social media sites and applications, including Facebook, YouTube, Twitter and blogs, have become major social media attractions today. The huge amount of information from this medium has become an attractive resource for organisations to monitor the opinions of users, and therefore, it is receiving a lot of attention in the field of sentiment analysis. Early work on sentiment analysis approached this problem at a document-level, where the overall sentiment was identified, rather than the details of the sentiment. This research took into account the use of an aspect-based sentiment analysis on Twitter in order to perform a finer-grained analysis. A new hybrid sentiment classification for Twitter is proposed by embedding a feature selection method. A comparison of the accuracy of the classification by the principal component analysis (PCA), latent semantic analysis (LSA), and random projection (RP) feature selection methods are presented in this paper. Furthermore, the hybrid sentiment classification was validated using Twitter datasets to represent different domains, and the evaluation with different classification algorithms also demonstrated that the new hybrid approach produced meaningful results. The implementations showed that the new hybrid sentiment classification was able to improve the accuracy performance from the existing baseline sentiment classification methods by 76.55, 71.62 and 74.24%, respectively.
Název v anglickém jazyce
Hybrid sentiment classification on twitter aspect-based sentiment analysis
Popis výsledku anglicky
Social media sites and applications, including Facebook, YouTube, Twitter and blogs, have become major social media attractions today. The huge amount of information from this medium has become an attractive resource for organisations to monitor the opinions of users, and therefore, it is receiving a lot of attention in the field of sentiment analysis. Early work on sentiment analysis approached this problem at a document-level, where the overall sentiment was identified, rather than the details of the sentiment. This research took into account the use of an aspect-based sentiment analysis on Twitter in order to perform a finer-grained analysis. A new hybrid sentiment classification for Twitter is proposed by embedding a feature selection method. A comparison of the accuracy of the classification by the principal component analysis (PCA), latent semantic analysis (LSA), and random projection (RP) feature selection methods are presented in this paper. Furthermore, the hybrid sentiment classification was validated using Twitter datasets to represent different domains, and the evaluation with different classification algorithms also demonstrated that the new hybrid approach produced meaningful results. The implementations showed that the new hybrid sentiment classification was able to improve the accuracy performance from the existing baseline sentiment classification methods by 76.55, 71.62 and 74.24%, respectively.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED INTELLIGENCE
ISSN
0924-669X
e-ISSN
—
Svazek periodika
48
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
15
Strana od-do
1218-1232
Kód UT WoS článku
000429401100011
EID výsledku v databázi Scopus
2-s2.0-85037730962