Singular Value Decomposition and Principal Component Analysis in Face Images Recognition and FSVDR of Faces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50014616" target="_blank" >RIV/62690094:18450/19:50014616 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-99996-8_10" target="_blank" >http://dx.doi.org/10.1007/978-3-319-99996-8_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-99996-8_10" target="_blank" >10.1007/978-3-319-99996-8_10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Singular Value Decomposition and Principal Component Analysis in Face Images Recognition and FSVDR of Faces
Popis výsledku v původním jazyce
The singular value decomposition (SVD) is an important tool for matrix computations with various uses. It is often combined with other methods or used within specific procedures. The text briefly introduces the SVD and lists its important features and selected elements of the SVD theory. In addition, the text deals with two important issues related to the field of artificial intelligence with extensive practical use. The first is face recognition analysis in relation to face representation using principal component analysis (PCA) and the second is fractional order singular value decomposition representation (FSVDR) of faces. The presented procedures can be used in an efficient real-time face recognition system, which can identify a subject’s head and then perform a recognition task by comparing the face to those of known individuals. The essence of the procedures, way of their application, their advantages and shortcomings, and selected results are presented in the text. All procedures are implemented in MATLAB software.
Název v anglickém jazyce
Singular Value Decomposition and Principal Component Analysis in Face Images Recognition and FSVDR of Faces
Popis výsledku anglicky
The singular value decomposition (SVD) is an important tool for matrix computations with various uses. It is often combined with other methods or used within specific procedures. The text briefly introduces the SVD and lists its important features and selected elements of the SVD theory. In addition, the text deals with two important issues related to the field of artificial intelligence with extensive practical use. The first is face recognition analysis in relation to face representation using principal component analysis (PCA) and the second is fractional order singular value decomposition representation (FSVDR) of faces. The presented procedures can be used in an efficient real-time face recognition system, which can identify a subject’s head and then perform a recognition task by comparing the face to those of known individuals. The essence of the procedures, way of their application, their advantages and shortcomings, and selected results are presented in the text. All procedures are implemented in MATLAB software.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology – ISAT 2018
ISBN
978-3-319-99995-1
ISSN
2194-5357
e-ISSN
2194-5365
Počet stran výsledku
10
Strana od-do
105-114
Název nakladatele
Springer Nature Switzerland AG Gewerbestrasse 11, 6330 Cham, Switzerland
Místo vydání
Gewerbestrasse 11, 6330 Cham, Switzerland
Místo konání akce
Polsko
Datum konání akce
16. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—