Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computer Aided detection for fibrillations and flutters using deep convolutional neural network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015691" target="_blank" >RIV/62690094:18450/19:50015691 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0020025519301884" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025519301884</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ins.2019.02.065" target="_blank" >10.1016/j.ins.2019.02.065</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computer Aided detection for fibrillations and flutters using deep convolutional neural network

  • Popis výsledku v původním jazyce

    Fibrillations and flutters are serious diseases influence the normal functioning of the heart. Among the most frequently occurring heart disorders belong atrial fibrillation (Afib), atrial flutter (Afl), and ventricular fibrillation (Vfib). Nowadays, heart failures are mostly detected by electrocardiogram (ECG) device by examining the signal transferred from electrodes placed on the human body to the output display. The signal is examined by professional health personnel, who are looking for an obvious pattern representing the normal or abnormal rhythm of the heart. Nevertheless, information from ECG can be distorted by noise on data transmission. Moreover,problematic pattern does not have to be so much different from normal and it can be difficult to recognize them just by human eye even by an expert in the field. An automated computer-aided diagnosis (CAD) is an approach to make decision support for elimination of these lacks. For early diagnosis, CAD tool should work in like real-time system without big time consuming and dependency on data and measuring differences of each device. This paper proposes a novel approach of a CAD system to the detection of fibrillations and flutters by our 8-layer deep convolutional neural network. Proposed model requires only basic data normalization without pre-processing and feature extraction from raw ECG samples. We have achieved the accuracy, specificity, and sensitivity of 98.45%, 99.27%, and 99.87% respectively. Designed system can be directly implemented like decision support system in clinical environment.

  • Název v anglickém jazyce

    Computer Aided detection for fibrillations and flutters using deep convolutional neural network

  • Popis výsledku anglicky

    Fibrillations and flutters are serious diseases influence the normal functioning of the heart. Among the most frequently occurring heart disorders belong atrial fibrillation (Afib), atrial flutter (Afl), and ventricular fibrillation (Vfib). Nowadays, heart failures are mostly detected by electrocardiogram (ECG) device by examining the signal transferred from electrodes placed on the human body to the output display. The signal is examined by professional health personnel, who are looking for an obvious pattern representing the normal or abnormal rhythm of the heart. Nevertheless, information from ECG can be distorted by noise on data transmission. Moreover,problematic pattern does not have to be so much different from normal and it can be difficult to recognize them just by human eye even by an expert in the field. An automated computer-aided diagnosis (CAD) is an approach to make decision support for elimination of these lacks. For early diagnosis, CAD tool should work in like real-time system without big time consuming and dependency on data and measuring differences of each device. This paper proposes a novel approach of a CAD system to the detection of fibrillations and flutters by our 8-layer deep convolutional neural network. Proposed model requires only basic data normalization without pre-processing and feature extraction from raw ECG samples. We have achieved the accuracy, specificity, and sensitivity of 98.45%, 99.27%, and 99.87% respectively. Designed system can be directly implemented like decision support system in clinical environment.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information sciences

  • ISSN

    0020-0255

  • e-ISSN

  • Svazek periodika

    486

  • Číslo periodika v rámci svazku

    červen

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    231-239

  • Kód UT WoS článku

    000464301300016

  • EID výsledku v databázi Scopus

    2-s2.0-85062047707