Computer Aided detection for fibrillations and flutters using deep convolutional neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015691" target="_blank" >RIV/62690094:18450/19:50015691 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020025519301884" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025519301884</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2019.02.065" target="_blank" >10.1016/j.ins.2019.02.065</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computer Aided detection for fibrillations and flutters using deep convolutional neural network
Popis výsledku v původním jazyce
Fibrillations and flutters are serious diseases influence the normal functioning of the heart. Among the most frequently occurring heart disorders belong atrial fibrillation (Afib), atrial flutter (Afl), and ventricular fibrillation (Vfib). Nowadays, heart failures are mostly detected by electrocardiogram (ECG) device by examining the signal transferred from electrodes placed on the human body to the output display. The signal is examined by professional health personnel, who are looking for an obvious pattern representing the normal or abnormal rhythm of the heart. Nevertheless, information from ECG can be distorted by noise on data transmission. Moreover,problematic pattern does not have to be so much different from normal and it can be difficult to recognize them just by human eye even by an expert in the field. An automated computer-aided diagnosis (CAD) is an approach to make decision support for elimination of these lacks. For early diagnosis, CAD tool should work in like real-time system without big time consuming and dependency on data and measuring differences of each device. This paper proposes a novel approach of a CAD system to the detection of fibrillations and flutters by our 8-layer deep convolutional neural network. Proposed model requires only basic data normalization without pre-processing and feature extraction from raw ECG samples. We have achieved the accuracy, specificity, and sensitivity of 98.45%, 99.27%, and 99.87% respectively. Designed system can be directly implemented like decision support system in clinical environment.
Název v anglickém jazyce
Computer Aided detection for fibrillations and flutters using deep convolutional neural network
Popis výsledku anglicky
Fibrillations and flutters are serious diseases influence the normal functioning of the heart. Among the most frequently occurring heart disorders belong atrial fibrillation (Afib), atrial flutter (Afl), and ventricular fibrillation (Vfib). Nowadays, heart failures are mostly detected by electrocardiogram (ECG) device by examining the signal transferred from electrodes placed on the human body to the output display. The signal is examined by professional health personnel, who are looking for an obvious pattern representing the normal or abnormal rhythm of the heart. Nevertheless, information from ECG can be distorted by noise on data transmission. Moreover,problematic pattern does not have to be so much different from normal and it can be difficult to recognize them just by human eye even by an expert in the field. An automated computer-aided diagnosis (CAD) is an approach to make decision support for elimination of these lacks. For early diagnosis, CAD tool should work in like real-time system without big time consuming and dependency on data and measuring differences of each device. This paper proposes a novel approach of a CAD system to the detection of fibrillations and flutters by our 8-layer deep convolutional neural network. Proposed model requires only basic data normalization without pre-processing and feature extraction from raw ECG samples. We have achieved the accuracy, specificity, and sensitivity of 98.45%, 99.27%, and 99.87% respectively. Designed system can be directly implemented like decision support system in clinical environment.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information sciences
ISSN
0020-0255
e-ISSN
—
Svazek periodika
486
Číslo periodika v rámci svazku
červen
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
231-239
Kód UT WoS článku
000464301300016
EID výsledku v databázi Scopus
2-s2.0-85062047707