Enhancing EEG signal analysis with geometry invariants for multichannel fusion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F24%3A50020818" target="_blank" >RIV/62690094:18470/24:50020818 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.inffus.2023.102023" target="_blank" >https://doi.org/10.1016/j.inffus.2023.102023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.inffus.2023.102023" target="_blank" >10.1016/j.inffus.2023.102023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing EEG signal analysis with geometry invariants for multichannel fusion
Popis výsledku v původním jazyce
Automated computer-aided diagnosis (CAD) has become an essential approach in the early detection of health issues. One of the significant benefits of this approach is high accuracy and low computational complexity without sacrificing model performance. Electroencephalogram (EEG) signals with seizure detection are one of the critical areas where CAD systems have been developed. In this study, we proposed a CAD system for seizure detection that prioritizes optimizing the solution's complexity. The proposed approach combines geometry invariants multi-channel fusion and amplitude normalization for input data preparation, and experiments on the frequency domain and CNN architecture for reducing complexity. Furthermore, the study includes explainability experiments that should aim to interpret not only the performance of the model but also the analysis of the patterns that contributed to the obtained results. The results demonstrate the effectiveness of the proposed model and its suitability for decision support in both clinical and home environments.
Název v anglickém jazyce
Enhancing EEG signal analysis with geometry invariants for multichannel fusion
Popis výsledku anglicky
Automated computer-aided diagnosis (CAD) has become an essential approach in the early detection of health issues. One of the significant benefits of this approach is high accuracy and low computational complexity without sacrificing model performance. Electroencephalogram (EEG) signals with seizure detection are one of the critical areas where CAD systems have been developed. In this study, we proposed a CAD system for seizure detection that prioritizes optimizing the solution's complexity. The proposed approach combines geometry invariants multi-channel fusion and amplitude normalization for input data preparation, and experiments on the frequency domain and CNN architecture for reducing complexity. Furthermore, the study includes explainability experiments that should aim to interpret not only the performance of the model but also the analysis of the patterns that contributed to the obtained results. The results demonstrate the effectiveness of the proposed model and its suitability for decision support in both clinical and home environments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Fusion
ISSN
1566-2535
e-ISSN
1872-6305
Svazek periodika
102
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
"Article Number: 102023"
Kód UT WoS článku
001083197700001
EID výsledku v databázi Scopus
2-s2.0-85171793659