Automatic seizure detection by convolutional neural networks with computational complexity analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50019875" target="_blank" >RIV/62690094:18450/23:50019875 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62690094:18470/23:50019875
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0169260722006587?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0169260722006587?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cmpb.2022.107277" target="_blank" >10.1016/j.cmpb.2022.107277</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic seizure detection by convolutional neural networks with computational complexity analysis
Popis výsledku v původním jazyce
Background and Objectives: Nowadays, an automated computer-aided diagnosis (CAD) is an approach that plays an important role in the detection of health issues. The main advantages should be in early diagno-sis, including high accuracy and low computational complexity without loss of the model performance. One of these systems type is concerned with Electroencephalogram (EEG) signals and seizure detection. We designed a CAD system approach for seizure detection that optimizes the complexity of the required solution while also being reusable on different problems.Methods: The methodology is built-in deep data analysis for normalization. In comparison to previous research, the system does not necessitate a feature extraction process that optimizes and reduces system complexity. The data classification is provided by a designed 8-layer deep convolutional neural network.Results: Depending on used data, we have achieved the accuracy, specificity, and sensitivity of 98%, 98%, and 98.5% on the short-term Bonn EEG dataset, and 96.99%, 96.89%, and 97.06% on the long-term CHB-MIT EEG dataset.Conclusions: Through the approach to detection, the system offers an optimized solution for seizure di-agnosis health problems. The proposed solution should be implemented in all clinical or home environ-ments for decision support.(c) 2022 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Automatic seizure detection by convolutional neural networks with computational complexity analysis
Popis výsledku anglicky
Background and Objectives: Nowadays, an automated computer-aided diagnosis (CAD) is an approach that plays an important role in the detection of health issues. The main advantages should be in early diagno-sis, including high accuracy and low computational complexity without loss of the model performance. One of these systems type is concerned with Electroencephalogram (EEG) signals and seizure detection. We designed a CAD system approach for seizure detection that optimizes the complexity of the required solution while also being reusable on different problems.Methods: The methodology is built-in deep data analysis for normalization. In comparison to previous research, the system does not necessitate a feature extraction process that optimizes and reduces system complexity. The data classification is provided by a designed 8-layer deep convolutional neural network.Results: Depending on used data, we have achieved the accuracy, specificity, and sensitivity of 98%, 98%, and 98.5% on the short-term Bonn EEG dataset, and 96.99%, 96.89%, and 97.06% on the long-term CHB-MIT EEG dataset.Conclusions: Through the approach to detection, the system offers an optimized solution for seizure di-agnosis health problems. The proposed solution should be implemented in all clinical or home environ-ments for decision support.(c) 2022 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Methods and Programs in Biomedicine
ISSN
0169-2607
e-ISSN
1872-7565
Svazek periodika
229
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
IE - Irsko
Počet stran výsledku
8
Strana od-do
"Article Number: 107277"
Kód UT WoS článku
000897677600004
EID výsledku v databázi Scopus
2-s2.0-85143536688