Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic seizure detection by convolutional neural networks with computational complexity analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50019875" target="_blank" >RIV/62690094:18450/23:50019875 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62690094:18470/23:50019875

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0169260722006587?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0169260722006587?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cmpb.2022.107277" target="_blank" >10.1016/j.cmpb.2022.107277</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic seizure detection by convolutional neural networks with computational complexity analysis

  • Popis výsledku v původním jazyce

    Background and Objectives: Nowadays, an automated computer-aided diagnosis (CAD) is an approach that plays an important role in the detection of health issues. The main advantages should be in early diagno-sis, including high accuracy and low computational complexity without loss of the model performance. One of these systems type is concerned with Electroencephalogram (EEG) signals and seizure detection. We designed a CAD system approach for seizure detection that optimizes the complexity of the required solution while also being reusable on different problems.Methods: The methodology is built-in deep data analysis for normalization. In comparison to previous research, the system does not necessitate a feature extraction process that optimizes and reduces system complexity. The data classification is provided by a designed 8-layer deep convolutional neural network.Results: Depending on used data, we have achieved the accuracy, specificity, and sensitivity of 98%, 98%, and 98.5% on the short-term Bonn EEG dataset, and 96.99%, 96.89%, and 97.06% on the long-term CHB-MIT EEG dataset.Conclusions: Through the approach to detection, the system offers an optimized solution for seizure di-agnosis health problems. The proposed solution should be implemented in all clinical or home environ-ments for decision support.(c) 2022 Elsevier B.V. All rights reserved.

  • Název v anglickém jazyce

    Automatic seizure detection by convolutional neural networks with computational complexity analysis

  • Popis výsledku anglicky

    Background and Objectives: Nowadays, an automated computer-aided diagnosis (CAD) is an approach that plays an important role in the detection of health issues. The main advantages should be in early diagno-sis, including high accuracy and low computational complexity without loss of the model performance. One of these systems type is concerned with Electroencephalogram (EEG) signals and seizure detection. We designed a CAD system approach for seizure detection that optimizes the complexity of the required solution while also being reusable on different problems.Methods: The methodology is built-in deep data analysis for normalization. In comparison to previous research, the system does not necessitate a feature extraction process that optimizes and reduces system complexity. The data classification is provided by a designed 8-layer deep convolutional neural network.Results: Depending on used data, we have achieved the accuracy, specificity, and sensitivity of 98%, 98%, and 98.5% on the short-term Bonn EEG dataset, and 96.99%, 96.89%, and 97.06% on the long-term CHB-MIT EEG dataset.Conclusions: Through the approach to detection, the system offers an optimized solution for seizure di-agnosis health problems. The proposed solution should be implemented in all clinical or home environ-ments for decision support.(c) 2022 Elsevier B.V. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computer Methods and Programs in Biomedicine

  • ISSN

    0169-2607

  • e-ISSN

    1872-7565

  • Svazek periodika

    229

  • Číslo periodika v rámci svazku

    February

  • Stát vydavatele periodika

    IE - Irsko

  • Počet stran výsledku

    8

  • Strana od-do

    "Article Number: 107277"

  • Kód UT WoS článku

    000897677600004

  • EID výsledku v databázi Scopus

    2-s2.0-85143536688