Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A novel fuzzy curvature method for recognition of anterior forearm subcutaneous veins by thermal imaging

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015774" target="_blank" >RIV/62690094:18450/19:50015774 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0957417418307358" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417418307358</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eswa.2018.11.017" target="_blank" >10.1016/j.eswa.2018.11.017</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A novel fuzzy curvature method for recognition of anterior forearm subcutaneous veins by thermal imaging

  • Popis výsledku v původním jazyce

    Anterior forearm recognition systems emerged in last decades to identify the vein systems and to decide the venipuncture sites. Basically, identification and also real-time visualization of the forearm veins are commonly accomplished by near-infrared (NIR) camera systems in the literature and also in applied medicine; however what we propose in this paper is easier and reliable alternative by thermal imaging. While identifying vein systems, the common drawback of visible spectrum and NIR camera solutions is lack of recognition possibility of rather hidden veins in the forearms. In other words, while these solutions are so useful for identification of superficial veins like Median Cubital and Median Antebrachial veins; yet they are not so efficient for subcutaneous veins like Cephalic vein. Therefore, we introduce a novel fuzzy directional curvature methodology to recognize the whole vein system of anterior forearm using infrared thermal (IR-T) imaging. Initially, the forearm image captured by a thermal camera is segmented by crisp 2-means and filtered by Gaussian high-pass filter for smoothing and contrast enhancement. Four types of directional curvatures, achieved by second order derivatives including vertical, horizontal and two diagonal directions, are reproduced as four single images from scratch. The images are subsequently fused by fuzzy curvature method to produce the final images representing the complete vein system in the forearm. The fusion procedure by fuzzy inference system as an expert system could be stated as the main novelty in infrared thermal imaging which is also so flexible thanks to the parametric design. The intelligent recognition system also provides various clear screenings of the whole vein system in forearms depending on the parameters selected, even though the veins are totally invisible. (C) 2018 Elsevier Ltd. All rights reserved.

  • Název v anglickém jazyce

    A novel fuzzy curvature method for recognition of anterior forearm subcutaneous veins by thermal imaging

  • Popis výsledku anglicky

    Anterior forearm recognition systems emerged in last decades to identify the vein systems and to decide the venipuncture sites. Basically, identification and also real-time visualization of the forearm veins are commonly accomplished by near-infrared (NIR) camera systems in the literature and also in applied medicine; however what we propose in this paper is easier and reliable alternative by thermal imaging. While identifying vein systems, the common drawback of visible spectrum and NIR camera solutions is lack of recognition possibility of rather hidden veins in the forearms. In other words, while these solutions are so useful for identification of superficial veins like Median Cubital and Median Antebrachial veins; yet they are not so efficient for subcutaneous veins like Cephalic vein. Therefore, we introduce a novel fuzzy directional curvature methodology to recognize the whole vein system of anterior forearm using infrared thermal (IR-T) imaging. Initially, the forearm image captured by a thermal camera is segmented by crisp 2-means and filtered by Gaussian high-pass filter for smoothing and contrast enhancement. Four types of directional curvatures, achieved by second order derivatives including vertical, horizontal and two diagonal directions, are reproduced as four single images from scratch. The images are subsequently fused by fuzzy curvature method to produce the final images representing the complete vein system in the forearm. The fusion procedure by fuzzy inference system as an expert system could be stated as the main novelty in infrared thermal imaging which is also so flexible thanks to the parametric design. The intelligent recognition system also provides various clear screenings of the whole vein system in forearms depending on the parameters selected, even though the veins are totally invisible. (C) 2018 Elsevier Ltd. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Expert systems with applications

  • ISSN

    0957-4174

  • e-ISSN

  • Svazek periodika

    120

  • Číslo periodika v rámci svazku

    April

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    33-42

  • Kód UT WoS článku

    000457814300003

  • EID výsledku v databázi Scopus