A novel fuzzy curvature method for recognition of anterior forearm subcutaneous veins by thermal imaging
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015774" target="_blank" >RIV/62690094:18450/19:50015774 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417418307358" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417418307358</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2018.11.017" target="_blank" >10.1016/j.eswa.2018.11.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel fuzzy curvature method for recognition of anterior forearm subcutaneous veins by thermal imaging
Popis výsledku v původním jazyce
Anterior forearm recognition systems emerged in last decades to identify the vein systems and to decide the venipuncture sites. Basically, identification and also real-time visualization of the forearm veins are commonly accomplished by near-infrared (NIR) camera systems in the literature and also in applied medicine; however what we propose in this paper is easier and reliable alternative by thermal imaging. While identifying vein systems, the common drawback of visible spectrum and NIR camera solutions is lack of recognition possibility of rather hidden veins in the forearms. In other words, while these solutions are so useful for identification of superficial veins like Median Cubital and Median Antebrachial veins; yet they are not so efficient for subcutaneous veins like Cephalic vein. Therefore, we introduce a novel fuzzy directional curvature methodology to recognize the whole vein system of anterior forearm using infrared thermal (IR-T) imaging. Initially, the forearm image captured by a thermal camera is segmented by crisp 2-means and filtered by Gaussian high-pass filter for smoothing and contrast enhancement. Four types of directional curvatures, achieved by second order derivatives including vertical, horizontal and two diagonal directions, are reproduced as four single images from scratch. The images are subsequently fused by fuzzy curvature method to produce the final images representing the complete vein system in the forearm. The fusion procedure by fuzzy inference system as an expert system could be stated as the main novelty in infrared thermal imaging which is also so flexible thanks to the parametric design. The intelligent recognition system also provides various clear screenings of the whole vein system in forearms depending on the parameters selected, even though the veins are totally invisible. (C) 2018 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
A novel fuzzy curvature method for recognition of anterior forearm subcutaneous veins by thermal imaging
Popis výsledku anglicky
Anterior forearm recognition systems emerged in last decades to identify the vein systems and to decide the venipuncture sites. Basically, identification and also real-time visualization of the forearm veins are commonly accomplished by near-infrared (NIR) camera systems in the literature and also in applied medicine; however what we propose in this paper is easier and reliable alternative by thermal imaging. While identifying vein systems, the common drawback of visible spectrum and NIR camera solutions is lack of recognition possibility of rather hidden veins in the forearms. In other words, while these solutions are so useful for identification of superficial veins like Median Cubital and Median Antebrachial veins; yet they are not so efficient for subcutaneous veins like Cephalic vein. Therefore, we introduce a novel fuzzy directional curvature methodology to recognize the whole vein system of anterior forearm using infrared thermal (IR-T) imaging. Initially, the forearm image captured by a thermal camera is segmented by crisp 2-means and filtered by Gaussian high-pass filter for smoothing and contrast enhancement. Four types of directional curvatures, achieved by second order derivatives including vertical, horizontal and two diagonal directions, are reproduced as four single images from scratch. The images are subsequently fused by fuzzy curvature method to produce the final images representing the complete vein system in the forearm. The fusion procedure by fuzzy inference system as an expert system could be stated as the main novelty in infrared thermal imaging which is also so flexible thanks to the parametric design. The intelligent recognition system also provides various clear screenings of the whole vein system in forearms depending on the parameters selected, even though the veins are totally invisible. (C) 2018 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert systems with applications
ISSN
0957-4174
e-ISSN
—
Svazek periodika
120
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
33-42
Kód UT WoS článku
000457814300003
EID výsledku v databázi Scopus
—