Least Squares Method With Equality Constraints and Polynomial Approximation of Lorenz Curve
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015901" target="_blank" >RIV/62690094:18450/19:50015901 - isvavai.cz</a>
Výsledek na webu
<a href="https://mme2019.ef.jcu.cz/files/conference_proceedings.pdf" target="_blank" >https://mme2019.ef.jcu.cz/files/conference_proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Least Squares Method With Equality Constraints and Polynomial Approximation of Lorenz Curve
Popis výsledku v původním jazyce
The least squares method is frequently and successfully used in the solution of various different econometric problems. No restrictions on data sets are usually considered. The only widely known problem with a constraint is the one where a linear model heading through the origin is solved. Nevertheless, we can encounter approximation problems having more data restrictions. For instance, the Lorenz curve which is a curve heading through two given points. In this case, it is useful to apply a least squares method subject to constraints. In this paper, two possible solutions of problems with natural data restrictions are examined. First, it is showed that the constrained problem with two boundary values can be transformed into the classical least squares problem and a special form of the normal equation is derived. A more general problem is then introduced and the Lagrange multiplier method is used to develop a different form of the normal equation. Finally, a polynomial approximation of the Lorenz curve applied to the Czech Republic income data is introduced.
Název v anglickém jazyce
Least Squares Method With Equality Constraints and Polynomial Approximation of Lorenz Curve
Popis výsledku anglicky
The least squares method is frequently and successfully used in the solution of various different econometric problems. No restrictions on data sets are usually considered. The only widely known problem with a constraint is the one where a linear model heading through the origin is solved. Nevertheless, we can encounter approximation problems having more data restrictions. For instance, the Lorenz curve which is a curve heading through two given points. In this case, it is useful to apply a least squares method subject to constraints. In this paper, two possible solutions of problems with natural data restrictions are examined. First, it is showed that the constrained problem with two boundary values can be transformed into the classical least squares problem and a special form of the normal equation is derived. A more general problem is then introduced and the Lagrange multiplier method is used to develop a different form of the normal equation. Finally, a polynomial approximation of the Lorenz curve applied to the Czech Republic income data is introduced.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Conference Proceedings, 37th International Conference on Mathematical Methods in Economics 2019
ISBN
978-80-7394-760-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
332-337
Název nakladatele
Jihočeská univerzita
Místo vydání
České Budějovice
Místo konání akce
České Budějovice
Datum konání akce
11. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000507570400055