PROBABILITY LINEAR METHOD POINT CLOUD APPROXIMATION
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU138432" target="_blank" >RIV/00216305:26210/20:PU138432 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.engmech.cz/im/im/download/EM2020_proceedings.pdf" target="_blank" >https://www.engmech.cz/im/im/download/EM2020_proceedings.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21495/5896-3-306" target="_blank" >10.21495/5896-3-306</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PROBABILITY LINEAR METHOD POINT CLOUD APPROXIMATION
Popis výsledku v původním jazyce
Fitting curves through point clouds is useful when the further computation is required to be fast or the data set is too large. The most common method to fit a curve into a point cloud is the approximation using the Least squares method (LSM) but it can be used only when the expected data have normal distribution. Data obtained from LIDAR often tend to have an error which can’t be solved by LSM, like data shifted in one angular direction. The main goal of this paper is to propose more efficient method for estimation of obstacle position and orientation. This method uses curve approximation based on probability; this can solve some classic errors that appear when processing data obtained by LIDAR. This method was tested and was found to have a disadvantage: great demand for computing power; its more than ten times slower than classic LSM and in cases with normal distribution gives the same results. It can be used in system where the emphasis is on accuracy or in multiagent solution when working with big data set is not desired.
Název v anglickém jazyce
PROBABILITY LINEAR METHOD POINT CLOUD APPROXIMATION
Popis výsledku anglicky
Fitting curves through point clouds is useful when the further computation is required to be fast or the data set is too large. The most common method to fit a curve into a point cloud is the approximation using the Least squares method (LSM) but it can be used only when the expected data have normal distribution. Data obtained from LIDAR often tend to have an error which can’t be solved by LSM, like data shifted in one angular direction. The main goal of this paper is to propose more efficient method for estimation of obstacle position and orientation. This method uses curve approximation based on probability; this can solve some classic errors that appear when processing data obtained by LIDAR. This method was tested and was found to have a disadvantage: great demand for computing power; its more than ten times slower than classic LSM and in cases with normal distribution gives the same results. It can be used in system where the emphasis is on accuracy or in multiagent solution when working with big data set is not desired.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ENGINEERING MECHANICS 2020 26th INTERNATIONAL CONFERENCE
ISBN
978-80-214-5896-3
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
306-309
Název nakladatele
Neuveden
Místo vydání
neuveden
Místo konání akce
Online
Datum konání akce
24. 11. 2020
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000667956100069