Strong, Strongly Universal and Weak Interval Eigenvectors in Max-Plus Algebra
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50016978" target="_blank" >RIV/62690094:18450/20:50016978 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/8/8/1348" target="_blank" >https://www.mdpi.com/2227-7390/8/8/1348</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8081348" target="_blank" >10.3390/math8081348</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Strong, Strongly Universal and Weak Interval Eigenvectors in Max-Plus Algebra
Popis výsledku v původním jazyce
The scheduling or project management optimization problems, in which the objective function depends on the operations maximum amd plus, can be naturally formulated and solved in max-plus algebra. A system of discrete activations of processors in parallel computing, or activations of some other cooperating machines, is described by a systems of max-plus linear equations. In particular, if the system is in a steady state, such as a synchronized computer network in data processing, then the state vector is an eigenvector of the system. In particular, if the system is in a steady state, such as a synchronized computer network in data processing, then the state vector is an eigenvector of the system. The properties and recognition algorithms for several types of interval eigenvectors are studied in this paper. Then, the strong and the strongly universal eigenvectors are studied and described as max-plus linear combinations of generators. Moreover, a polynomial recognition algorithm is suggested and its correctness is proved. Similar results are presented for the weak eigenvectors. The results are illustrated by numerical examples.
Název v anglickém jazyce
Strong, Strongly Universal and Weak Interval Eigenvectors in Max-Plus Algebra
Popis výsledku anglicky
The scheduling or project management optimization problems, in which the objective function depends on the operations maximum amd plus, can be naturally formulated and solved in max-plus algebra. A system of discrete activations of processors in parallel computing, or activations of some other cooperating machines, is described by a systems of max-plus linear equations. In particular, if the system is in a steady state, such as a synchronized computer network in data processing, then the state vector is an eigenvector of the system. In particular, if the system is in a steady state, such as a synchronized computer network in data processing, then the state vector is an eigenvector of the system. The properties and recognition algorithms for several types of interval eigenvectors are studied in this paper. Then, the strong and the strongly universal eigenvectors are studied and described as max-plus linear combinations of generators. Moreover, a polynomial recognition algorithm is suggested and its correctness is proved. Similar results are presented for the weak eigenvectors. The results are illustrated by numerical examples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-01246S" target="_blank" >GA18-01246S: Nestandardní optimalizační a rozhodovací metody v manažerských procesech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
"Article Number: 1348"
Kód UT WoS článku
000564680600001
EID výsledku v databázi Scopus
2-s2.0-85089960561