Improving class noise detection and classification performance: A new two-filter CNDC model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017130" target="_blank" >RIV/62690094:18450/20:50017130 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1568494620303689?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494620303689?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2020.106428" target="_blank" >10.1016/j.asoc.2020.106428</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving class noise detection and classification performance: A new two-filter CNDC model
Popis výsledku v původním jazyce
Class noise is an important issue in classification with a lot of potential consequences. It can decrease the overall accuracy and increase the complexity of the induced model. This study investigates ensemble filtering, removing and relabeling noisy instances issues and proposes a new two-filter model for Class Noise Detection and Classification (CNDC). The proposed two-filter CNDC model comprises two major parts, which are noise detection and noise classification. The noise detection part involves ensemble and distance filtering to overcome ensemble issues. In latter part, a Removing-Relabeling (REM-REL) technique is proposed to enhance overall performance of noise classification. To evaluate the performance of the proposed model, several experiments were conducted on six real data sets. The proposed REM-REL technique was found to be successful to classify noisy instances. The final results showed that the proposed model led to a significant performance improvement compared with ensemble filtering. (C) 2020 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Improving class noise detection and classification performance: A new two-filter CNDC model
Popis výsledku anglicky
Class noise is an important issue in classification with a lot of potential consequences. It can decrease the overall accuracy and increase the complexity of the induced model. This study investigates ensemble filtering, removing and relabeling noisy instances issues and proposes a new two-filter model for Class Noise Detection and Classification (CNDC). The proposed two-filter CNDC model comprises two major parts, which are noise detection and noise classification. The noise detection part involves ensemble and distance filtering to overcome ensemble issues. In latter part, a Removing-Relabeling (REM-REL) technique is proposed to enhance overall performance of noise classification. To evaluate the performance of the proposed model, several experiments were conducted on six real data sets. The proposed REM-REL technique was found to be successful to classify noisy instances. The final results showed that the proposed model led to a significant performance improvement compared with ensemble filtering. (C) 2020 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied soft computing
ISSN
1568-4946
e-ISSN
—
Svazek periodika
94
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
"Article Number: 106428"
Kód UT WoS článku
000565708100011
EID výsledku v databázi Scopus
2-s2.0-85086442420