A hybrid model for class noise detection using k-means and classification filtering algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017131" target="_blank" >RIV/62690094:18450/20:50017131 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s42452-020-3129-x" target="_blank" >https://link.springer.com/article/10.1007/s42452-020-3129-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s42452-020-3129-x" target="_blank" >10.1007/s42452-020-3129-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A hybrid model for class noise detection using k-means and classification filtering algorithms
Popis výsledku v původním jazyce
Real data may have a considerable amount of noise produced by error in data collection, transmission and storage. The noisy training data set increases the training time and complexity of the induced machine learning model, which led to reduce the overall performance. Identifying noisy instances and then eliminating or correcting them are useful techniques in data mining research. This paper investigates misclassified instances issues and proposes a clustering-based and classification filtering algorithm (CLCF) in noise detection and classification model. It applies the k-means clustering technique for noise detection, and then five different classification filtering algorithms are applied for noise filtering. It also employs two well-known techniques for noise classification, namely, removing and relabeling. To evaluate the performance of the CLCF model, several experiments were conducted on four binary data sets.The proposed technique was found to be successful in classify class noisy instances, which is significantly effective for decision making system in several domains such as medical areas. The results shows that the proposed model led to a significant performance improvement compared with before performing noise filtering.
Název v anglickém jazyce
A hybrid model for class noise detection using k-means and classification filtering algorithms
Popis výsledku anglicky
Real data may have a considerable amount of noise produced by error in data collection, transmission and storage. The noisy training data set increases the training time and complexity of the induced machine learning model, which led to reduce the overall performance. Identifying noisy instances and then eliminating or correcting them are useful techniques in data mining research. This paper investigates misclassified instances issues and proposes a clustering-based and classification filtering algorithm (CLCF) in noise detection and classification model. It applies the k-means clustering technique for noise detection, and then five different classification filtering algorithms are applied for noise filtering. It also employs two well-known techniques for noise classification, namely, removing and relabeling. To evaluate the performance of the CLCF model, several experiments were conducted on four binary data sets.The proposed technique was found to be successful in classify class noisy instances, which is significantly effective for decision making system in several domains such as medical areas. The results shows that the proposed model led to a significant performance improvement compared with before performing noise filtering.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SN APPLIED SCIENCES
ISSN
2523-3963
e-ISSN
—
Svazek periodika
2
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
"Article Number: 1303"
Kód UT WoS článku
000548070900004
EID výsledku v databázi Scopus
2-s2.0-85100707341