Discrete Model of Optimal Growth on a Finite Time Horizon as a Boundary Value Problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017189" target="_blank" >RIV/62690094:18450/20:50017189 - isvavai.cz</a>
Výsledek na webu
<a href="https://mme2020.mendelu.cz/wcd/w-rek-mme/mme2020_conference_proceedings_final_final.pdf" target="_blank" >https://mme2020.mendelu.cz/wcd/w-rek-mme/mme2020_conference_proceedings_final_final.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Discrete Model of Optimal Growth on a Finite Time Horizon as a Boundary Value Problem
Popis výsledku v původním jazyce
The aim of this paper is to introduce a way to transform a discrete growth model with a ????inite time horizon to a system of nonlinear equations that can be solved by a numerical method. Neoclassical growth model is usually presented in continuous time. If an objective utility function is given the growth model can be formulated as optimal control problem. This paper considers a discrete-time growth model on a ????inite time horizon. First necessary conditions for optimal solution to the problem are introduced. Then Euler equation is developed. The ????inal model can be expressed by a system of two nonlinear difference equations with two boundary values based on these relations. Unfortunately, such a problem cannot be solved analytically. Therefore, the given system of difference equations is rewritten using the system of nonlinear equations which is subsequently solved by a suitable numerical method.
Název v anglickém jazyce
Discrete Model of Optimal Growth on a Finite Time Horizon as a Boundary Value Problem
Popis výsledku anglicky
The aim of this paper is to introduce a way to transform a discrete growth model with a ????inite time horizon to a system of nonlinear equations that can be solved by a numerical method. Neoclassical growth model is usually presented in continuous time. If an objective utility function is given the growth model can be formulated as optimal control problem. This paper considers a discrete-time growth model on a ????inite time horizon. First necessary conditions for optimal solution to the problem are introduced. Then Euler equation is developed. The ????inal model can be expressed by a system of two nonlinear difference equations with two boundary values based on these relations. Unfortunately, such a problem cannot be solved analytically. Therefore, the given system of difference equations is rewritten using the system of nonlinear equations which is subsequently solved by a suitable numerical method.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
38th International Conference on Mathematical Methods in Economics
ISBN
978-80-7509-734-7
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
467-473
Název nakladatele
Mendel University Publishing Center
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
9. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000668460800072