The Effects of Missing Data Characteristics on the Choice of Imputation Techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50018394" target="_blank" >RIV/62690094:18450/20:50018394 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.worldscientific.com/doi/abs/10.1142/S2196888820500098" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S2196888820500098</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S2196888820500098" target="_blank" >10.1142/S2196888820500098</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Effects of Missing Data Characteristics on the Choice of Imputation Techniques
Popis výsledku v původním jazyce
One major characteristic of data is completeness. Missing data is a significant problem in medical datasets. It leads to incorrect classification of patients and is dangerous to the health management of patients. Many factors lead to the missingness of values in databases in medical datasets. In this paper, we propose the need to examine the causes of missing data in a medical dataset to ensure that the right imputation method is used in solving the problem. The mechanism of missingness in datasets was studied to know the missing pattern of datasets and determine a suitable imputation technique to generate complete datasets. The pattern shows that the missingness of the dataset used in this study is not a monotone missing pattern. Also, single imputation techniques underestimate variance and ignore relationships among the variables; therefore, we used multiple imputations technique that runs in five iterations for the imputation of each missing value. The whole missing values in the dataset were 100% regenerated. The imputed datasets were validated using an extreme learning machine (ELM) classifier. The results show improvement in the accuracy of the imputed datasets. The work can, however, be extended to compare the accuracy of the imputed datasets with the original dataset with different classifiers like support vector machine (SVM), radial basis function (RBF), and ELMs. © 2020 The Author(s).
Název v anglickém jazyce
The Effects of Missing Data Characteristics on the Choice of Imputation Techniques
Popis výsledku anglicky
One major characteristic of data is completeness. Missing data is a significant problem in medical datasets. It leads to incorrect classification of patients and is dangerous to the health management of patients. Many factors lead to the missingness of values in databases in medical datasets. In this paper, we propose the need to examine the causes of missing data in a medical dataset to ensure that the right imputation method is used in solving the problem. The mechanism of missingness in datasets was studied to know the missing pattern of datasets and determine a suitable imputation technique to generate complete datasets. The pattern shows that the missingness of the dataset used in this study is not a monotone missing pattern. Also, single imputation techniques underestimate variance and ignore relationships among the variables; therefore, we used multiple imputations technique that runs in five iterations for the imputation of each missing value. The whole missing values in the dataset were 100% regenerated. The imputed datasets were validated using an extreme learning machine (ELM) classifier. The results show improvement in the accuracy of the imputed datasets. The work can, however, be extended to compare the accuracy of the imputed datasets with the original dataset with different classifiers like support vector machine (SVM), radial basis function (RBF), and ELMs. © 2020 The Author(s).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Vietnam Journal of Computer Science
ISSN
2196-8888
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
17
Strana od-do
161-177
Kód UT WoS článku
000667276600004
EID výsledku v databázi Scopus
2-s2.0-85116030001