Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Effects of Missing Data Characteristics on the Choice of Imputation Techniques

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50018394" target="_blank" >RIV/62690094:18450/20:50018394 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.worldscientific.com/doi/abs/10.1142/S2196888820500098" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S2196888820500098</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S2196888820500098" target="_blank" >10.1142/S2196888820500098</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Effects of Missing Data Characteristics on the Choice of Imputation Techniques

  • Popis výsledku v původním jazyce

    One major characteristic of data is completeness. Missing data is a significant problem in medical datasets. It leads to incorrect classification of patients and is dangerous to the health management of patients. Many factors lead to the missingness of values in databases in medical datasets. In this paper, we propose the need to examine the causes of missing data in a medical dataset to ensure that the right imputation method is used in solving the problem. The mechanism of missingness in datasets was studied to know the missing pattern of datasets and determine a suitable imputation technique to generate complete datasets. The pattern shows that the missingness of the dataset used in this study is not a monotone missing pattern. Also, single imputation techniques underestimate variance and ignore relationships among the variables; therefore, we used multiple imputations technique that runs in five iterations for the imputation of each missing value. The whole missing values in the dataset were 100% regenerated. The imputed datasets were validated using an extreme learning machine (ELM) classifier. The results show improvement in the accuracy of the imputed datasets. The work can, however, be extended to compare the accuracy of the imputed datasets with the original dataset with different classifiers like support vector machine (SVM), radial basis function (RBF), and ELMs. © 2020 The Author(s).

  • Název v anglickém jazyce

    The Effects of Missing Data Characteristics on the Choice of Imputation Techniques

  • Popis výsledku anglicky

    One major characteristic of data is completeness. Missing data is a significant problem in medical datasets. It leads to incorrect classification of patients and is dangerous to the health management of patients. Many factors lead to the missingness of values in databases in medical datasets. In this paper, we propose the need to examine the causes of missing data in a medical dataset to ensure that the right imputation method is used in solving the problem. The mechanism of missingness in datasets was studied to know the missing pattern of datasets and determine a suitable imputation technique to generate complete datasets. The pattern shows that the missingness of the dataset used in this study is not a monotone missing pattern. Also, single imputation techniques underestimate variance and ignore relationships among the variables; therefore, we used multiple imputations technique that runs in five iterations for the imputation of each missing value. The whole missing values in the dataset were 100% regenerated. The imputed datasets were validated using an extreme learning machine (ELM) classifier. The results show improvement in the accuracy of the imputed datasets. The work can, however, be extended to compare the accuracy of the imputed datasets with the original dataset with different classifiers like support vector machine (SVM), radial basis function (RBF), and ELMs. © 2020 The Author(s).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Vietnam Journal of Computer Science

  • ISSN

    2196-8888

  • e-ISSN

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    SG - Singapurská republika

  • Počet stran výsledku

    17

  • Strana od-do

    161-177

  • Kód UT WoS článku

    000667276600004

  • EID výsledku v databázi Scopus

    2-s2.0-85116030001