Missing Features Reconstruction Using a Wasserstein Generative Adversarial Imputation Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00341700" target="_blank" >RIV/68407700:21240/20:00341700 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-50423-6_17" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-50423-6_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-50423-6_17" target="_blank" >10.1007/978-3-030-50423-6_17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Missing Features Reconstruction Using a Wasserstein Generative Adversarial Imputation Network
Popis výsledku v původním jazyce
Missing data is one of the most common preprocessing problems. In this paper, we experimentally research the use of generative and non-generative models for feature reconstruction. Variational Autoencoder with Arbitrary Conditioning (VAEAC) and Generative Adversarial Imputation Network (GAIN) were researched as representatives of generative models, while the denoising autoencoder (DAE) represented non-generative models. Performance of the models is compared to traditional methods k-nearest neighbors (k-NN) and Multiple Imputation by Chained Equations (MICE). Moreover, we introduce WGAIN as the Wasserstein modification of GAIN, which turns out to be the best imputation model when the degree of missingness is less than or equal to 30%. Experiments were performed on real-world and artificial datasets with continuous features where different percentages of features, varying from 10% to 50%, were missing. Evaluation of algorithms was done by measuring the accuracy of the classification model previously trained on the uncorrupted dataset. The results show that GAIN and especially WGAIN are the best imputers regardless of the conditions. In general, they outperform or are comparative to MICE, k-NN, DAE, and VAEAC.
Název v anglickém jazyce
Missing Features Reconstruction Using a Wasserstein Generative Adversarial Imputation Network
Popis výsledku anglicky
Missing data is one of the most common preprocessing problems. In this paper, we experimentally research the use of generative and non-generative models for feature reconstruction. Variational Autoencoder with Arbitrary Conditioning (VAEAC) and Generative Adversarial Imputation Network (GAIN) were researched as representatives of generative models, while the denoising autoencoder (DAE) represented non-generative models. Performance of the models is compared to traditional methods k-nearest neighbors (k-NN) and Multiple Imputation by Chained Equations (MICE). Moreover, we introduce WGAIN as the Wasserstein modification of GAIN, which turns out to be the best imputation model when the degree of missingness is less than or equal to 30%. Experiments were performed on real-world and artificial datasets with continuous features where different percentages of features, varying from 10% to 50%, were missing. Evaluation of algorithms was done by measuring the accuracy of the classification model previously trained on the uncorrupted dataset. The results show that GAIN and especially WGAIN are the best imputers regardless of the conditions. In general, they outperform or are comparative to MICE, k-NN, DAE, and VAEAC.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computational Science - ICCS 2020
ISBN
978-3-030-50422-9
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
15
Strana od-do
225-239
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Amsterdam
Datum konání akce
3. 6. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—