Missing Features Reconstruction and Its Impact on Classification Accuracy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F19%3A00331729" target="_blank" >RIV/68407700:21240/19:00331729 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-22744-9_16" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-22744-9_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-22744-9_16" target="_blank" >10.1007/978-3-030-22744-9_16</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Missing Features Reconstruction and Its Impact on Classification Accuracy
Popis výsledku v původním jazyce
In real-world applications, we can encounter situations when a well-trained model has to be used to predict from a damaged dataset. The damage caused by missing or corrupted values can be either on the level of individual instances or on the level of entire features. Both situations have a negative impact on the usability of the model on such a dataset. This paper focuses on the scenario where entire features are missing which can be understood as a specific case of transfer learning. Our aim is to experimentally research the influence of various imputation methods on the performance of several classification models. The imputation impact is researched on a combination of traditional methods such as k-NN, linear regression, and MICE compared to modern imputation methods such as multi-layer perceptron (MLP) and gradient boosted trees (XGBT). For linear regression, MLP, and XGBT we also propose two approaches to using them for multiple features imputation. The experiments were performed on both real world and artificial datasets with continuous features where different numbers of features, varying from one feature to 50%, were missing. The results show that MICE and linear regression are generally good imputers regardless of the conditions. On the other hand, the performance of MLP and XGBT is strongly dataset dependent. Their performance is the best in some cases, but more often they perform worse than MICE or linear regression.
Název v anglickém jazyce
Missing Features Reconstruction and Its Impact on Classification Accuracy
Popis výsledku anglicky
In real-world applications, we can encounter situations when a well-trained model has to be used to predict from a damaged dataset. The damage caused by missing or corrupted values can be either on the level of individual instances or on the level of entire features. Both situations have a negative impact on the usability of the model on such a dataset. This paper focuses on the scenario where entire features are missing which can be understood as a specific case of transfer learning. Our aim is to experimentally research the influence of various imputation methods on the performance of several classification models. The imputation impact is researched on a combination of traditional methods such as k-NN, linear regression, and MICE compared to modern imputation methods such as multi-layer perceptron (MLP) and gradient boosted trees (XGBT). For linear regression, MLP, and XGBT we also propose two approaches to using them for multiple features imputation. The experiments were performed on both real world and artificial datasets with continuous features where different numbers of features, varying from one feature to 50%, were missing. The results show that MICE and linear regression are generally good imputers regardless of the conditions. On the other hand, the performance of MLP and XGBT is strongly dataset dependent. Their performance is the best in some cases, but more often they perform worse than MICE or linear regression.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computational Science – ICCS 2019
ISBN
978-3-030-22744-9
ISSN
—
e-ISSN
—
Počet stran výsledku
14
Strana od-do
207-220
Název nakladatele
Springer, Cham
Místo vydání
—
Místo konání akce
Faro
Datum konání akce
12. 6. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—