Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

IMPLEMENTATION OF A MACHINE LEARNING ALGORITHM FOR SENTIMENT ANALYSIS OF INDONESIA'S 2019 PRESIDENTIAL ELECTION

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50017779" target="_blank" >RIV/62690094:18450/21:50017779 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/1532" target="_blank" >https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/1532</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.31436/iiumej.v22i1.1532" target="_blank" >10.31436/iiumej.v22i1.1532</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    IMPLEMENTATION OF A MACHINE LEARNING ALGORITHM FOR SENTIMENT ANALYSIS OF INDONESIA'S 2019 PRESIDENTIAL ELECTION

  • Popis výsledku v původním jazyce

    In 2019, citizens of Indonesia participated in the democratic process of electing a new president, vice president, and various legislative candidates for the country. The 2019 Indonesian presidential election was very tense in terms of the candidates&apos; campaigns in cyberspace, especially on social media sites such as Facebook, Twitter, Instagram, Google+, Tumblr, LinkedIn, etc. The Indonesian people used social media platforms to express their positive, neutral, and also negative opinions on the respective presidential candidates. The campaigning of respective social media users on their choice of candidates for regents, governors, and legislative positions up to presidential candidates was conducted via the Internet and online media. Therefore, the aim of this paper is to conduct sentiment analysis on the candidates in the 2019 Indonesia presidential election based on Twitter datasets. The study used datasets on the opinions expressed by the Indonesian people available on Twitter with the hashtags (#) containing &quot;Jokowi and Prabowo.&quot; We conducted data pre-processing using a selection of comments, data cleansing, text parsing, sentence normalization and tokenization based on the given text in the Indonesian language, determination of class attributes, and, finally, we classified the Twitter posts with the hashtags (#) using Naive Bayes Classifier (NBC) and a Support Vector Machine (SVM) to achieve an optimal and maximum optimization accuracy. The study provides benefits in terms of helping the community to research opinions on Twitter that contain positive, neutral, or negative sentiments. Sentiment Analysis on the candidates in the 2019 Indonesian presidential election on Twitter using non-conventional processes resulted in cost, time, and effort savings. This research proved that the combination of the SVM machine learning algorithm and alphabetic tokenization produced the highest accuracy value of 79.02%. While the lowest accuracy value in this study was obtained with a combination of the NBC machine learning algorithm and N-gram tokenization with an accuracy value of 44.94%.

  • Název v anglickém jazyce

    IMPLEMENTATION OF A MACHINE LEARNING ALGORITHM FOR SENTIMENT ANALYSIS OF INDONESIA'S 2019 PRESIDENTIAL ELECTION

  • Popis výsledku anglicky

    In 2019, citizens of Indonesia participated in the democratic process of electing a new president, vice president, and various legislative candidates for the country. The 2019 Indonesian presidential election was very tense in terms of the candidates&apos; campaigns in cyberspace, especially on social media sites such as Facebook, Twitter, Instagram, Google+, Tumblr, LinkedIn, etc. The Indonesian people used social media platforms to express their positive, neutral, and also negative opinions on the respective presidential candidates. The campaigning of respective social media users on their choice of candidates for regents, governors, and legislative positions up to presidential candidates was conducted via the Internet and online media. Therefore, the aim of this paper is to conduct sentiment analysis on the candidates in the 2019 Indonesia presidential election based on Twitter datasets. The study used datasets on the opinions expressed by the Indonesian people available on Twitter with the hashtags (#) containing &quot;Jokowi and Prabowo.&quot; We conducted data pre-processing using a selection of comments, data cleansing, text parsing, sentence normalization and tokenization based on the given text in the Indonesian language, determination of class attributes, and, finally, we classified the Twitter posts with the hashtags (#) using Naive Bayes Classifier (NBC) and a Support Vector Machine (SVM) to achieve an optimal and maximum optimization accuracy. The study provides benefits in terms of helping the community to research opinions on Twitter that contain positive, neutral, or negative sentiments. Sentiment Analysis on the candidates in the 2019 Indonesian presidential election on Twitter using non-conventional processes resulted in cost, time, and effort savings. This research proved that the combination of the SVM machine learning algorithm and alphabetic tokenization produced the highest accuracy value of 79.02%. While the lowest accuracy value in this study was obtained with a combination of the NBC machine learning algorithm and N-gram tokenization with an accuracy value of 44.94%.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    21101 - Food and beverages

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IIUM ENGINEERING JOURNAL

  • ISSN

    1511-788X

  • e-ISSN

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    MY - Malajsie

  • Počet stran výsledku

    16

  • Strana od-do

    78-93

  • Kód UT WoS článku

    000605375600007

  • EID výsledku v databázi Scopus

    2-s2.0-85099953325