Gated Contextual Features for Salient Object Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50017956" target="_blank" >RIV/62690094:18450/21:50017956 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9371722" target="_blank" >https://ieeexplore.ieee.org/document/9371722</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TIM.2021.3064423" target="_blank" >10.1109/TIM.2021.3064423</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gated Contextual Features for Salient Object Detection
Popis výsledku v původním jazyce
The effective extraction of local and contextual visual cues carrying information of different scales is crucial for accurate detection of the salient object(s) with varying shape, size, and location. The Atrous Spatial Pyramid Pooling (ASPP) and its dense versions are widely used for extracting contextual features for dense prediction tasks. The skip connections in densely or moderately connected ASPP directly propagate the context information from a parallel dilated convolution to the next higher-rate dilated convolution to combat the “gridding issue” in àtrous convolutions. The aggregated context from several scales may dilute features belonging to small objects or confuse between the salient object and the background. To emphasize invariance features for different scale visual patterns in an image, a gate-based context extraction module is proposed in this work. Gate functions are embedded in the inter-branch short connection of the proposed module. The learnable gates are deployed to decide on the relevance of the contextual information extracted at a lower scale for the next higher scale. Experimental results on salient object detection task demonstrate that gates are helpful to retain relevant contextual information across multiple-scales of the context-extraction module. The performance of the proposed gated contextual feature-based salient object detector is evaluated on five broadly used saliency detection benchmarks by comparing it with the other 13 state-of-the-art approaches. Experimental outcomes show that the proposed method achieves a favorable performance for various compared evaluation measures. IEEE
Název v anglickém jazyce
Gated Contextual Features for Salient Object Detection
Popis výsledku anglicky
The effective extraction of local and contextual visual cues carrying information of different scales is crucial for accurate detection of the salient object(s) with varying shape, size, and location. The Atrous Spatial Pyramid Pooling (ASPP) and its dense versions are widely used for extracting contextual features for dense prediction tasks. The skip connections in densely or moderately connected ASPP directly propagate the context information from a parallel dilated convolution to the next higher-rate dilated convolution to combat the “gridding issue” in àtrous convolutions. The aggregated context from several scales may dilute features belonging to small objects or confuse between the salient object and the background. To emphasize invariance features for different scale visual patterns in an image, a gate-based context extraction module is proposed in this work. Gate functions are embedded in the inter-branch short connection of the proposed module. The learnable gates are deployed to decide on the relevance of the contextual information extracted at a lower scale for the next higher scale. Experimental results on salient object detection task demonstrate that gates are helpful to retain relevant contextual information across multiple-scales of the context-extraction module. The performance of the proposed gated contextual feature-based salient object detector is evaluated on five broadly used saliency detection benchmarks by comparing it with the other 13 state-of-the-art approaches. Experimental outcomes show that the proposed method achieves a favorable performance for various compared evaluation measures. IEEE
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21101 - Food and beverages
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Instrumentation and Measurement
ISSN
0018-9456
e-ISSN
—
Svazek periodika
70
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
"Article Number: 5007613"
Kód UT WoS článku
000731626300022
EID výsledku v databázi Scopus
2-s2.0-85102622466