Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Gated Contextual Features for Salient Object Detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50017956" target="_blank" >RIV/62690094:18450/21:50017956 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9371722" target="_blank" >https://ieeexplore.ieee.org/document/9371722</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIM.2021.3064423" target="_blank" >10.1109/TIM.2021.3064423</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Gated Contextual Features for Salient Object Detection

  • Popis výsledku v původním jazyce

    The effective extraction of local and contextual visual cues carrying information of different scales is crucial for accurate detection of the salient object(s) with varying shape, size, and location. The Atrous Spatial Pyramid Pooling (ASPP) and its dense versions are widely used for extracting contextual features for dense prediction tasks. The skip connections in densely or moderately connected ASPP directly propagate the context information from a parallel dilated convolution to the next higher-rate dilated convolution to combat the “gridding issue” in àtrous convolutions. The aggregated context from several scales may dilute features belonging to small objects or confuse between the salient object and the background. To emphasize invariance features for different scale visual patterns in an image, a gate-based context extraction module is proposed in this work. Gate functions are embedded in the inter-branch short connection of the proposed module. The learnable gates are deployed to decide on the relevance of the contextual information extracted at a lower scale for the next higher scale. Experimental results on salient object detection task demonstrate that gates are helpful to retain relevant contextual information across multiple-scales of the context-extraction module. The performance of the proposed gated contextual feature-based salient object detector is evaluated on five broadly used saliency detection benchmarks by comparing it with the other 13 state-of-the-art approaches. Experimental outcomes show that the proposed method achieves a favorable performance for various compared evaluation measures. IEEE

  • Název v anglickém jazyce

    Gated Contextual Features for Salient Object Detection

  • Popis výsledku anglicky

    The effective extraction of local and contextual visual cues carrying information of different scales is crucial for accurate detection of the salient object(s) with varying shape, size, and location. The Atrous Spatial Pyramid Pooling (ASPP) and its dense versions are widely used for extracting contextual features for dense prediction tasks. The skip connections in densely or moderately connected ASPP directly propagate the context information from a parallel dilated convolution to the next higher-rate dilated convolution to combat the “gridding issue” in àtrous convolutions. The aggregated context from several scales may dilute features belonging to small objects or confuse between the salient object and the background. To emphasize invariance features for different scale visual patterns in an image, a gate-based context extraction module is proposed in this work. Gate functions are embedded in the inter-branch short connection of the proposed module. The learnable gates are deployed to decide on the relevance of the contextual information extracted at a lower scale for the next higher scale. Experimental results on salient object detection task demonstrate that gates are helpful to retain relevant contextual information across multiple-scales of the context-extraction module. The performance of the proposed gated contextual feature-based salient object detector is evaluated on five broadly used saliency detection benchmarks by comparing it with the other 13 state-of-the-art approaches. Experimental outcomes show that the proposed method achieves a favorable performance for various compared evaluation measures. IEEE

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    21101 - Food and beverages

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Instrumentation and Measurement

  • ISSN

    0018-9456

  • e-ISSN

  • Svazek periodika

    70

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    "Article Number: 5007613"

  • Kód UT WoS článku

    000731626300022

  • EID výsledku v databázi Scopus

    2-s2.0-85102622466