Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ALMNet: Adjacent Layer Driven Multiscale Features for Salient Object Detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018317" target="_blank" >RIV/62690094:18450/21:50018317 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9524698" target="_blank" >https://ieeexplore.ieee.org/document/9524698</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIM.2021.3108503" target="_blank" >10.1109/TIM.2021.3108503</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ALMNet: Adjacent Layer Driven Multiscale Features for Salient Object Detection

  • Popis výsledku v původním jazyce

    Nowadays, the usage of deep learning-based approaches for salient object detection (SOD) is increasing exponentially to detect and localize visually distinct regions in static images. However, the variability in scales of salient objects requires further attention given the abstract nature of the multi-layer feature hierarchy of convolution neural networks (CNNs). Firstly, feature maps of different layers in CNNs embed abstract information about objects that changes with the object’s scale. Secondly, the progressive feature fusion in models such as the feature pyramid network loses its effectiveness in detecting sharp boundaries due to the late fusion of detailed features. This work proposes two modules namely, adjacent layer attention block and partial encoder-decoder block to handle the aforementioned issues. The proposed adjacent layer attention block facilitates communication among the layers of closest abstraction to mine abundant scale features at the current resolution. The resultant integrated feature at a resolution contains detailed as well as semantic information from interaction among the adjacent layers useful to extract scale information of complex objects. A partial encoder-decoder module utilizes the resolution-specific integrated features from the adjacent layer attention block of its corresponding encoder to generate multi-scale features, and fuse them in an top-down manner. This level-specific distribution of aggregated features within a partial encoder-decoder helps coarser-layers of the network to acquire boundary information. Experimental results on five broadly used salient object detection datasets are compared with recent 20 state-of-the-art SOD models. The proposed method performs favorably against its competitors without any pre-processing or post-processing. IEEE

  • Název v anglickém jazyce

    ALMNet: Adjacent Layer Driven Multiscale Features for Salient Object Detection

  • Popis výsledku anglicky

    Nowadays, the usage of deep learning-based approaches for salient object detection (SOD) is increasing exponentially to detect and localize visually distinct regions in static images. However, the variability in scales of salient objects requires further attention given the abstract nature of the multi-layer feature hierarchy of convolution neural networks (CNNs). Firstly, feature maps of different layers in CNNs embed abstract information about objects that changes with the object’s scale. Secondly, the progressive feature fusion in models such as the feature pyramid network loses its effectiveness in detecting sharp boundaries due to the late fusion of detailed features. This work proposes two modules namely, adjacent layer attention block and partial encoder-decoder block to handle the aforementioned issues. The proposed adjacent layer attention block facilitates communication among the layers of closest abstraction to mine abundant scale features at the current resolution. The resultant integrated feature at a resolution contains detailed as well as semantic information from interaction among the adjacent layers useful to extract scale information of complex objects. A partial encoder-decoder module utilizes the resolution-specific integrated features from the adjacent layer attention block of its corresponding encoder to generate multi-scale features, and fuse them in an top-down manner. This level-specific distribution of aggregated features within a partial encoder-decoder helps coarser-layers of the network to acquire boundary information. Experimental results on five broadly used salient object detection datasets are compared with recent 20 state-of-the-art SOD models. The proposed method performs favorably against its competitors without any pre-processing or post-processing. IEEE

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Instrumentation and Measurement

  • ISSN

    0018-9456

  • e-ISSN

  • Svazek periodika

    70

  • Číslo periodika v rámci svazku

    August

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    "Article Number: 2513214"

  • Kód UT WoS článku

    000698642300004

  • EID výsledku v databázi Scopus

    2-s2.0-85114729199