ALMNet: Adjacent Layer Driven Multiscale Features for Salient Object Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018317" target="_blank" >RIV/62690094:18450/21:50018317 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9524698" target="_blank" >https://ieeexplore.ieee.org/document/9524698</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TIM.2021.3108503" target="_blank" >10.1109/TIM.2021.3108503</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ALMNet: Adjacent Layer Driven Multiscale Features for Salient Object Detection
Popis výsledku v původním jazyce
Nowadays, the usage of deep learning-based approaches for salient object detection (SOD) is increasing exponentially to detect and localize visually distinct regions in static images. However, the variability in scales of salient objects requires further attention given the abstract nature of the multi-layer feature hierarchy of convolution neural networks (CNNs). Firstly, feature maps of different layers in CNNs embed abstract information about objects that changes with the object’s scale. Secondly, the progressive feature fusion in models such as the feature pyramid network loses its effectiveness in detecting sharp boundaries due to the late fusion of detailed features. This work proposes two modules namely, adjacent layer attention block and partial encoder-decoder block to handle the aforementioned issues. The proposed adjacent layer attention block facilitates communication among the layers of closest abstraction to mine abundant scale features at the current resolution. The resultant integrated feature at a resolution contains detailed as well as semantic information from interaction among the adjacent layers useful to extract scale information of complex objects. A partial encoder-decoder module utilizes the resolution-specific integrated features from the adjacent layer attention block of its corresponding encoder to generate multi-scale features, and fuse them in an top-down manner. This level-specific distribution of aggregated features within a partial encoder-decoder helps coarser-layers of the network to acquire boundary information. Experimental results on five broadly used salient object detection datasets are compared with recent 20 state-of-the-art SOD models. The proposed method performs favorably against its competitors without any pre-processing or post-processing. IEEE
Název v anglickém jazyce
ALMNet: Adjacent Layer Driven Multiscale Features for Salient Object Detection
Popis výsledku anglicky
Nowadays, the usage of deep learning-based approaches for salient object detection (SOD) is increasing exponentially to detect and localize visually distinct regions in static images. However, the variability in scales of salient objects requires further attention given the abstract nature of the multi-layer feature hierarchy of convolution neural networks (CNNs). Firstly, feature maps of different layers in CNNs embed abstract information about objects that changes with the object’s scale. Secondly, the progressive feature fusion in models such as the feature pyramid network loses its effectiveness in detecting sharp boundaries due to the late fusion of detailed features. This work proposes two modules namely, adjacent layer attention block and partial encoder-decoder block to handle the aforementioned issues. The proposed adjacent layer attention block facilitates communication among the layers of closest abstraction to mine abundant scale features at the current resolution. The resultant integrated feature at a resolution contains detailed as well as semantic information from interaction among the adjacent layers useful to extract scale information of complex objects. A partial encoder-decoder module utilizes the resolution-specific integrated features from the adjacent layer attention block of its corresponding encoder to generate multi-scale features, and fuse them in an top-down manner. This level-specific distribution of aggregated features within a partial encoder-decoder helps coarser-layers of the network to acquire boundary information. Experimental results on five broadly used salient object detection datasets are compared with recent 20 state-of-the-art SOD models. The proposed method performs favorably against its competitors without any pre-processing or post-processing. IEEE
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Instrumentation and Measurement
ISSN
0018-9456
e-ISSN
—
Svazek periodika
70
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
"Article Number: 2513214"
Kód UT WoS článku
000698642300004
EID výsledku v databázi Scopus
2-s2.0-85114729199