Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

DeepVoCoder: A CNN Model for Compression and Coding of Narrow Band Speech

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10242237" target="_blank" >RIV/61989100:27240/19:10242237 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/19:10242237

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8730308" target="_blank" >https://ieeexplore.ieee.org/document/8730308</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2019.2920663" target="_blank" >10.1109/ACCESS.2019.2920663</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    DeepVoCoder: A CNN Model for Compression and Coding of Narrow Band Speech

  • Popis výsledku v původním jazyce

    This paper proposes a convolutional neural network (CNN)-based encoder model to compress and code speech signal directly from raw input speech. Although the model can synthesize wideband speech by implicit bandwidth extension, narrowband is preferred for IP telephony and telecommunications purposes. The model takes time domain speech samples as inputs and encodes them using a cascade of convolutional filters in multiple layers, where pooling is applied after some layers to downsample the encoded speech by half. The final bottleneck layer of the CNN encoder provides an abstract and compact representation of the speech signal. In this paper, it is demonstrated that this compact representation is sufficient to reconstruct the original speech signal in high quality using the CNN decoder. This paper also discusses the theoretical background of why and how CNN may be used for end-to-end speech compression and coding.

  • Název v anglickém jazyce

    DeepVoCoder: A CNN Model for Compression and Coding of Narrow Band Speech

  • Popis výsledku anglicky

    This paper proposes a convolutional neural network (CNN)-based encoder model to compress and code speech signal directly from raw input speech. Although the model can synthesize wideband speech by implicit bandwidth extension, narrowband is preferred for IP telephony and telecommunications purposes. The model takes time domain speech samples as inputs and encodes them using a cascade of convolutional filters in multiple layers, where pooling is applied after some layers to downsample the encoded speech by half. The final bottleneck layer of the CNN encoder provides an abstract and compact representation of the speech signal. In this paper, it is demonstrated that this compact representation is sufficient to reconstruct the original speech signal in high quality using the CNN decoder. This paper also discusses the theoretical background of why and how CNN may be used for end-to-end speech compression and coding.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2015070" target="_blank" >LM2015070: IT4Innovations národní superpočítačové centrum</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    Neuveden

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    75081-75089

  • Kód UT WoS článku

    000473188800001

  • EID výsledku v databázi Scopus

    2-s2.0-85068349969