Transfer learning with fine tuning for human action recognition from still images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018494" target="_blank" >RIV/62690094:18450/21:50018494 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11042-021-10753-y" target="_blank" >https://link.springer.com/article/10.1007/s11042-021-10753-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11042-021-10753-y" target="_blank" >10.1007/s11042-021-10753-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transfer learning with fine tuning for human action recognition from still images
Popis výsledku v původním jazyce
Still image-based human action recognition (HAR) is one of the most challenging research problems in the field of computer vision. Some of the significant reasons to support this claim are the availability of few datasets as well as fewer images per action class and the existence of many confusing classes in the datasets and comparing with video-based data. There is the unavailability of temporal information. In this work, we train some of the most reputed Convolutional Neural Network (CNN) based architectures using transfer learning after fine-tuned those suitably to develop a model for still image-based HAR. Since the number of images per action classes is found to be significantly less in number, we have also applied some well-known data augmentation techniques to increase the amount of data, which is always a need for deep learning-based models. Two benchmark datasets used for validating our model are Stanford 40 and PPMI, which are better known for their confusing action classes and the presence of occluded images and random poses of subjects. Results obtained by our model on these datasets outperform some of the benchmark results reported in the literature by a considerable margin. Class imbalance is deliberately introduced in the said datasets to better explore the robustness of the proposed model. The source code of the present work is available at: https://github.com/saikat021/Transfer-Learning-Based-HAR
Název v anglickém jazyce
Transfer learning with fine tuning for human action recognition from still images
Popis výsledku anglicky
Still image-based human action recognition (HAR) is one of the most challenging research problems in the field of computer vision. Some of the significant reasons to support this claim are the availability of few datasets as well as fewer images per action class and the existence of many confusing classes in the datasets and comparing with video-based data. There is the unavailability of temporal information. In this work, we train some of the most reputed Convolutional Neural Network (CNN) based architectures using transfer learning after fine-tuned those suitably to develop a model for still image-based HAR. Since the number of images per action classes is found to be significantly less in number, we have also applied some well-known data augmentation techniques to increase the amount of data, which is always a need for deep learning-based models. Two benchmark datasets used for validating our model are Stanford 40 and PPMI, which are better known for their confusing action classes and the presence of occluded images and random poses of subjects. Results obtained by our model on these datasets outperform some of the benchmark results reported in the literature by a considerable margin. Class imbalance is deliberately introduced in the said datasets to better explore the robustness of the proposed model. The source code of the present work is available at: https://github.com/saikat021/Transfer-Learning-Based-HAR
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Multimedia Tools and Applications
ISSN
1380-7501
e-ISSN
—
Svazek periodika
80
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
32
Strana od-do
20547-20578
Kód UT WoS článku
000626425600001
EID výsledku v databázi Scopus
2-s2.0-85102308234