Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Transfer learning with fine tuning for human action recognition from still images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018494" target="_blank" >RIV/62690094:18450/21:50018494 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s11042-021-10753-y" target="_blank" >https://link.springer.com/article/10.1007/s11042-021-10753-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11042-021-10753-y" target="_blank" >10.1007/s11042-021-10753-y</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Transfer learning with fine tuning for human action recognition from still images

  • Popis výsledku v původním jazyce

    Still image-based human action recognition (HAR) is one of the most challenging research problems in the field of computer vision. Some of the significant reasons to support this claim are the availability of few datasets as well as fewer images per action class and the existence of many confusing classes in the datasets and comparing with video-based data. There is the unavailability of temporal information. In this work, we train some of the most reputed Convolutional Neural Network (CNN) based architectures using transfer learning after fine-tuned those suitably to develop a model for still image-based HAR. Since the number of images per action classes is found to be significantly less in number, we have also applied some well-known data augmentation techniques to increase the amount of data, which is always a need for deep learning-based models. Two benchmark datasets used for validating our model are Stanford 40 and PPMI, which are better known for their confusing action classes and the presence of occluded images and random poses of subjects. Results obtained by our model on these datasets outperform some of the benchmark results reported in the literature by a considerable margin. Class imbalance is deliberately introduced in the said datasets to better explore the robustness of the proposed model. The source code of the present work is available at: https://github.com/saikat021/Transfer-Learning-Based-HAR

  • Název v anglickém jazyce

    Transfer learning with fine tuning for human action recognition from still images

  • Popis výsledku anglicky

    Still image-based human action recognition (HAR) is one of the most challenging research problems in the field of computer vision. Some of the significant reasons to support this claim are the availability of few datasets as well as fewer images per action class and the existence of many confusing classes in the datasets and comparing with video-based data. There is the unavailability of temporal information. In this work, we train some of the most reputed Convolutional Neural Network (CNN) based architectures using transfer learning after fine-tuned those suitably to develop a model for still image-based HAR. Since the number of images per action classes is found to be significantly less in number, we have also applied some well-known data augmentation techniques to increase the amount of data, which is always a need for deep learning-based models. Two benchmark datasets used for validating our model are Stanford 40 and PPMI, which are better known for their confusing action classes and the presence of occluded images and random poses of subjects. Results obtained by our model on these datasets outperform some of the benchmark results reported in the literature by a considerable margin. Class imbalance is deliberately introduced in the said datasets to better explore the robustness of the proposed model. The source code of the present work is available at: https://github.com/saikat021/Transfer-Learning-Based-HAR

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Multimedia Tools and Applications

  • ISSN

    1380-7501

  • e-ISSN

  • Svazek periodika

    80

  • Číslo periodika v rámci svazku

    13

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    32

  • Strana od-do

    20547-20578

  • Kód UT WoS článku

    000626425600001

  • EID výsledku v databázi Scopus

    2-s2.0-85102308234