Lower Bounds on Avoiding Thresholds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50019040" target="_blank" >RIV/62690094:18450/21:50019040 - isvavai.cz</a>
Výsledek na webu
<a href="https://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=16204" target="_blank" >https://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=16204</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2021.46" target="_blank" >10.4230/LIPIcs.MFCS.2021.46</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lower Bounds on Avoiding Thresholds
Popis výsledku v původním jazyce
For a DFA, a word avoids a subset of states, if after reading that word the automaton cannot be in any state from the subset regardless of its initial state. A subset that admits an avoiding word is avoidable. The k-avoiding threshold of a DFA is the smallest number such that every avoidable subset of size k can be avoided with a word no longer than that number. We study the problem of determining the maximum possible k-avoiding thresholds. For every fixed k ≥ 1, we show a general construction of strongly connected DFAs with n states and the k-avoiding threshold in Θ(nk). This meets the known upper bound for k ≥ 3. For k = 1 and k = 2, the known upper bounds are respectively in O(n2) and in O(n3). For k = 1, we show that 2n − 3 is attainable for every number of states n in the class of strongly connected synchronizing binary DFAs, which is supposed to be the best possible in the class of all DFAs for n ≥ 8. For k = 2, we show that the conjectured solution for k = 1 (an upper bound in O(n)) also implies a tight upper bound in O(n2) on 2-avoiding threshold. Finally, we discuss the possibility of using k-avoiding thresholds of synchronizing automata to improve upper bounds on the length of the shortest reset words.
Název v anglickém jazyce
Lower Bounds on Avoiding Thresholds
Popis výsledku anglicky
For a DFA, a word avoids a subset of states, if after reading that word the automaton cannot be in any state from the subset regardless of its initial state. A subset that admits an avoiding word is avoidable. The k-avoiding threshold of a DFA is the smallest number such that every avoidable subset of size k can be avoided with a word no longer than that number. We study the problem of determining the maximum possible k-avoiding thresholds. For every fixed k ≥ 1, we show a general construction of strongly connected DFAs with n states and the k-avoiding threshold in Θ(nk). This meets the known upper bound for k ≥ 3. For k = 1 and k = 2, the known upper bounds are respectively in O(n2) and in O(n3). For k = 1, we show that 2n − 3 is attainable for every number of states n in the class of strongly connected synchronizing binary DFAs, which is supposed to be the best possible in the class of all DFAs for n ≥ 8. For k = 2, we show that the conjectured solution for k = 1 (an upper bound in O(n)) also implies a tight upper bound in O(n2) on 2-avoiding threshold. Finally, we discuss the possibility of using k-avoiding thresholds of synchronizing automata to improve upper bounds on the length of the shortest reset words.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)
ISBN
978-3-95977-201-3
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
14
Strana od-do
"Article number: 46"
Název nakladatele
LIPICS
Místo vydání
Dagstuhl
Místo konání akce
Tallinn
Datum konání akce
23. 8. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—