Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

LwMLA-NET: A Lightweight Multi-Level Attention-based NETwork for Segmentation of COVID-19 Lungs Abnormalities from CT Images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019099" target="_blank" >RIV/62690094:18450/22:50019099 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9740186" target="_blank" >https://ieeexplore.ieee.org/document/9740186</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIM.2022.3161690" target="_blank" >10.1109/TIM.2022.3161690</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    LwMLA-NET: A Lightweight Multi-Level Attention-based NETwork for Segmentation of COVID-19 Lungs Abnormalities from CT Images

  • Popis výsledku v původním jazyce

    COVID-19 emerged as a global pandemic in past two years. Typical abnormal findings in chest CT images of COVID-19 patients are ground glass opacities (GGO) and consolidation, which signify the extent of damage caused to the lungs. The manual annotation of those abnormalities for severity analysis is complex, tedious, and time-consuming. This motivated us to develop a vision-based analysis framework for automated segmentation of lungs abnormalities. We proposed a deep learning framework, namely LwMLA-NET “Lightweight Multi-Level Attention-based NETwork”, to segment GGO and consolidation. The LwMLA-NET is based on an encoder-decoder architecture where depth-wise separable convolutions are employed at each stage, making it a light-weighted framework that significantly reduces the computational cost. Another distinguishable module in LwMLA-NET is the multilevel attention (MLA) mechanism which focuses on dominant and relevant features and avoids propagation of insignificant features from the encoder to the decoder, thereby aiding faster optimization. Integrating the Atrous Spatial Pyramid Pooling (ASPP) module in the bottleneck helps to handle scale variations. The LwMLA-NET was evaluated on two databases, MedSeg and Radiopedia, and obtained F1-scores of 76.7% and 73.1%, respectively. The experimental evaluation justifies that LwMLA-NET outperforms other state-of-the-art deep learning frameworks like Attention U-Net, PSP-Net, Cople-Net, Inf-Net, and Mobile-Net V2 in terms of segmentation performance and has an acceptable generalization capability. Moreover, our team“, LwMLA-NET-Team-KDD-JU”, participated in Kaggle’s “Covid 19 CT Images Segmentation” open challenge. The performance was evaluated on a separate test set, and we obtained 4th rank on the leaderboard among 40 teams with an F1-score of 71.196%. IEEE

  • Název v anglickém jazyce

    LwMLA-NET: A Lightweight Multi-Level Attention-based NETwork for Segmentation of COVID-19 Lungs Abnormalities from CT Images

  • Popis výsledku anglicky

    COVID-19 emerged as a global pandemic in past two years. Typical abnormal findings in chest CT images of COVID-19 patients are ground glass opacities (GGO) and consolidation, which signify the extent of damage caused to the lungs. The manual annotation of those abnormalities for severity analysis is complex, tedious, and time-consuming. This motivated us to develop a vision-based analysis framework for automated segmentation of lungs abnormalities. We proposed a deep learning framework, namely LwMLA-NET “Lightweight Multi-Level Attention-based NETwork”, to segment GGO and consolidation. The LwMLA-NET is based on an encoder-decoder architecture where depth-wise separable convolutions are employed at each stage, making it a light-weighted framework that significantly reduces the computational cost. Another distinguishable module in LwMLA-NET is the multilevel attention (MLA) mechanism which focuses on dominant and relevant features and avoids propagation of insignificant features from the encoder to the decoder, thereby aiding faster optimization. Integrating the Atrous Spatial Pyramid Pooling (ASPP) module in the bottleneck helps to handle scale variations. The LwMLA-NET was evaluated on two databases, MedSeg and Radiopedia, and obtained F1-scores of 76.7% and 73.1%, respectively. The experimental evaluation justifies that LwMLA-NET outperforms other state-of-the-art deep learning frameworks like Attention U-Net, PSP-Net, Cople-Net, Inf-Net, and Mobile-Net V2 in terms of segmentation performance and has an acceptable generalization capability. Moreover, our team“, LwMLA-NET-Team-KDD-JU”, participated in Kaggle’s “Covid 19 CT Images Segmentation” open challenge. The performance was evaluated on a separate test set, and we obtained 4th rank on the leaderboard among 40 teams with an F1-score of 71.196%. IEEE

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF18_069%2F0010054" target="_blank" >EF18_069/0010054: IT4Neuro(degeneration)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Instrumentation and Measurement

  • ISSN

    0018-9456

  • e-ISSN

    1557-9662

  • Svazek periodika

    71

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    "Article Number: 5007813"

  • Kód UT WoS článku

    000778909800005

  • EID výsledku v databázi Scopus

    2-s2.0-85127065324