Deep transfer learning based photonics sensor for assessment of seed-quality
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019103" target="_blank" >RIV/62690094:18450/22:50019103 - isvavai.cz</a>
Výsledek na webu
<a href="https://linkinghub.elsevier.com/retrieve/pii/S0168169922002083" target="_blank" >https://linkinghub.elsevier.com/retrieve/pii/S0168169922002083</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compag.2022.106891" target="_blank" >10.1016/j.compag.2022.106891</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep transfer learning based photonics sensor for assessment of seed-quality
Popis výsledku v původním jazyce
Seed-quality is one of the most important factors for achieving the objectives of uniform seedling establishment and high crop yield. In this work, we propose laser backscattering and deep transfer learning (TL) based photonics sensor for automatic identification and classification of high-quality seeds. The proposed sensor is based on capturing a single backscattered image of a seed sample and processing the acquired images by using deep learning (DL) based algorithms. Advantages of the proposed sensor include its ability to characterize morphological and biological changes related to seed-quality, lower memory requirement, robustness against external noise and vibration, easy alignments, and low complexity of acquisition and processing units. Furthermore, use of DL based processing frameworks including convolution neural network (CNN) and various TL models (VGG16, VGG19, InceptionV3, and ResNet50) extract abstract features from the images without any additional image processing and accelerate classification efficiency. Obtained results indicate that all the DL models performed significantly well with higher accuracy; however, InceptionV3 outperformed rest of the models with accuracy reaching up to 98.31%. To validate performance of the proposed sensor standard quality parameters comprising percentage imbibition (PI), radicle length, and germination percentage (GP) were also calculated. Significant change (p < 0.05) in these parameters show that the proposed sensor can accurately monitor the quality of seeds with higher accuracy. Moreover, experimental simplicity and DL based automatic classification make the sensor suitable for real-time applications. © 2022 Elsevier B.V.
Název v anglickém jazyce
Deep transfer learning based photonics sensor for assessment of seed-quality
Popis výsledku anglicky
Seed-quality is one of the most important factors for achieving the objectives of uniform seedling establishment and high crop yield. In this work, we propose laser backscattering and deep transfer learning (TL) based photonics sensor for automatic identification and classification of high-quality seeds. The proposed sensor is based on capturing a single backscattered image of a seed sample and processing the acquired images by using deep learning (DL) based algorithms. Advantages of the proposed sensor include its ability to characterize morphological and biological changes related to seed-quality, lower memory requirement, robustness against external noise and vibration, easy alignments, and low complexity of acquisition and processing units. Furthermore, use of DL based processing frameworks including convolution neural network (CNN) and various TL models (VGG16, VGG19, InceptionV3, and ResNet50) extract abstract features from the images without any additional image processing and accelerate classification efficiency. Obtained results indicate that all the DL models performed significantly well with higher accuracy; however, InceptionV3 outperformed rest of the models with accuracy reaching up to 98.31%. To validate performance of the proposed sensor standard quality parameters comprising percentage imbibition (PI), radicle length, and germination percentage (GP) were also calculated. Significant change (p < 0.05) in these parameters show that the proposed sensor can accurately monitor the quality of seeds with higher accuracy. Moreover, experimental simplicity and DL based automatic classification make the sensor suitable for real-time applications. © 2022 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Electronics in Agriculture
ISSN
0168-1699
e-ISSN
1872-7107
Svazek periodika
196
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
"Article number: 106891"
Kód UT WoS článku
000806136800007
EID výsledku v databázi Scopus
2-s2.0-85127225551