Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep transfer learning based photonics sensor for assessment of seed-quality

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019103" target="_blank" >RIV/62690094:18450/22:50019103 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://linkinghub.elsevier.com/retrieve/pii/S0168169922002083" target="_blank" >https://linkinghub.elsevier.com/retrieve/pii/S0168169922002083</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compag.2022.106891" target="_blank" >10.1016/j.compag.2022.106891</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep transfer learning based photonics sensor for assessment of seed-quality

  • Popis výsledku v původním jazyce

    Seed-quality is one of the most important factors for achieving the objectives of uniform seedling establishment and high crop yield. In this work, we propose laser backscattering and deep transfer learning (TL) based photonics sensor for automatic identification and classification of high-quality seeds. The proposed sensor is based on capturing a single backscattered image of a seed sample and processing the acquired images by using deep learning (DL) based algorithms. Advantages of the proposed sensor include its ability to characterize morphological and biological changes related to seed-quality, lower memory requirement, robustness against external noise and vibration, easy alignments, and low complexity of acquisition and processing units. Furthermore, use of DL based processing frameworks including convolution neural network (CNN) and various TL models (VGG16, VGG19, InceptionV3, and ResNet50) extract abstract features from the images without any additional image processing and accelerate classification efficiency. Obtained results indicate that all the DL models performed significantly well with higher accuracy; however, InceptionV3 outperformed rest of the models with accuracy reaching up to 98.31%. To validate performance of the proposed sensor standard quality parameters comprising percentage imbibition (PI), radicle length, and germination percentage (GP) were also calculated. Significant change (p &lt; 0.05) in these parameters show that the proposed sensor can accurately monitor the quality of seeds with higher accuracy. Moreover, experimental simplicity and DL based automatic classification make the sensor suitable for real-time applications. © 2022 Elsevier B.V.

  • Název v anglickém jazyce

    Deep transfer learning based photonics sensor for assessment of seed-quality

  • Popis výsledku anglicky

    Seed-quality is one of the most important factors for achieving the objectives of uniform seedling establishment and high crop yield. In this work, we propose laser backscattering and deep transfer learning (TL) based photonics sensor for automatic identification and classification of high-quality seeds. The proposed sensor is based on capturing a single backscattered image of a seed sample and processing the acquired images by using deep learning (DL) based algorithms. Advantages of the proposed sensor include its ability to characterize morphological and biological changes related to seed-quality, lower memory requirement, robustness against external noise and vibration, easy alignments, and low complexity of acquisition and processing units. Furthermore, use of DL based processing frameworks including convolution neural network (CNN) and various TL models (VGG16, VGG19, InceptionV3, and ResNet50) extract abstract features from the images without any additional image processing and accelerate classification efficiency. Obtained results indicate that all the DL models performed significantly well with higher accuracy; however, InceptionV3 outperformed rest of the models with accuracy reaching up to 98.31%. To validate performance of the proposed sensor standard quality parameters comprising percentage imbibition (PI), radicle length, and germination percentage (GP) were also calculated. Significant change (p &lt; 0.05) in these parameters show that the proposed sensor can accurately monitor the quality of seeds with higher accuracy. Moreover, experimental simplicity and DL based automatic classification make the sensor suitable for real-time applications. © 2022 Elsevier B.V.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers and Electronics in Agriculture

  • ISSN

    0168-1699

  • e-ISSN

    1872-7107

  • Svazek periodika

    196

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    "Article number: 106891"

  • Kód UT WoS článku

    000806136800007

  • EID výsledku v databázi Scopus

    2-s2.0-85127225551