Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep learning based processing framework for spatio-temporal analysis and classification of laser biospeckle data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50020700" target="_blank" >RIV/62690094:18450/24:50020700 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0030399223010319?pes=vor" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0030399223010319?pes=vor</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.optlastec.2023.110138" target="_blank" >10.1016/j.optlastec.2023.110138</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep learning based processing framework for spatio-temporal analysis and classification of laser biospeckle data

  • Popis výsledku v původním jazyce

    Laser biospeckle is an advanced optical technique with the ability to non-destructively visualize various transient phenomenon via spatial and temporal statistics. However, accuracy of the existing image processing techniques used to process biospeckle data is hampered by various experimental and processing dependent factors. Therefore, in this work, a novel 3D convolution neural network (3D CNN) based deep learning (DL) architecture is developed for spatio-temporal analysis of biospeckle data in both qualitative and quantitative domains that effectively reduces errors introduced due to the influence of varying experimental parameters. Firstly, 3D CNN based image processing model is proposed for spatio-temporal analysis and classification of biospeckle data. Furthermore, a novel DL based numerical indexing strategy is developed for identification of level of activity in a sample. Finally, impact of varying experimental parameters on accuracy of the proposed technique is analyzed. In this direction, multiple experiments were performed to examine the effect of variation in input data parameters such as frame dimension, frame rate, number of frames, and background noise on accuracy of the trained model. Performance of the proposed model was analyzed and compared with respect to synthetic data generated by using rotating diffuser based simulation model. Robustness of the proposed strategy was also validated experimentally on practical data associated with identification of disease in seeds. Obtained results demonstrated that the proposed technique is accurate and can perform spatio-temporal classification and numerical indexing of the biospeckle data under varying experimental parameters. © 2023 Elsevier Ltd

  • Název v anglickém jazyce

    Deep learning based processing framework for spatio-temporal analysis and classification of laser biospeckle data

  • Popis výsledku anglicky

    Laser biospeckle is an advanced optical technique with the ability to non-destructively visualize various transient phenomenon via spatial and temporal statistics. However, accuracy of the existing image processing techniques used to process biospeckle data is hampered by various experimental and processing dependent factors. Therefore, in this work, a novel 3D convolution neural network (3D CNN) based deep learning (DL) architecture is developed for spatio-temporal analysis of biospeckle data in both qualitative and quantitative domains that effectively reduces errors introduced due to the influence of varying experimental parameters. Firstly, 3D CNN based image processing model is proposed for spatio-temporal analysis and classification of biospeckle data. Furthermore, a novel DL based numerical indexing strategy is developed for identification of level of activity in a sample. Finally, impact of varying experimental parameters on accuracy of the proposed technique is analyzed. In this direction, multiple experiments were performed to examine the effect of variation in input data parameters such as frame dimension, frame rate, number of frames, and background noise on accuracy of the trained model. Performance of the proposed model was analyzed and compared with respect to synthetic data generated by using rotating diffuser based simulation model. Robustness of the proposed strategy was also validated experimentally on practical data associated with identification of disease in seeds. Obtained results demonstrated that the proposed technique is accurate and can perform spatio-temporal classification and numerical indexing of the biospeckle data under varying experimental parameters. © 2023 Elsevier Ltd

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF18_069%2F0010054" target="_blank" >EF18_069/0010054: IT4Neuro(degeneration)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Optics and Laser Technology

  • ISSN

    0030-3992

  • e-ISSN

    1879-2545

  • Svazek periodika

    169

  • Číslo periodika v rámci svazku

    February

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    "Article number: 110138"

  • Kód UT WoS článku

    001158706500001

  • EID výsledku v databázi Scopus

    2-s2.0-85172891539