Deep learning based processing framework for spatio-temporal analysis and classification of laser biospeckle data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50020700" target="_blank" >RIV/62690094:18450/24:50020700 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0030399223010319?pes=vor" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0030399223010319?pes=vor</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.optlastec.2023.110138" target="_blank" >10.1016/j.optlastec.2023.110138</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep learning based processing framework for spatio-temporal analysis and classification of laser biospeckle data
Popis výsledku v původním jazyce
Laser biospeckle is an advanced optical technique with the ability to non-destructively visualize various transient phenomenon via spatial and temporal statistics. However, accuracy of the existing image processing techniques used to process biospeckle data is hampered by various experimental and processing dependent factors. Therefore, in this work, a novel 3D convolution neural network (3D CNN) based deep learning (DL) architecture is developed for spatio-temporal analysis of biospeckle data in both qualitative and quantitative domains that effectively reduces errors introduced due to the influence of varying experimental parameters. Firstly, 3D CNN based image processing model is proposed for spatio-temporal analysis and classification of biospeckle data. Furthermore, a novel DL based numerical indexing strategy is developed for identification of level of activity in a sample. Finally, impact of varying experimental parameters on accuracy of the proposed technique is analyzed. In this direction, multiple experiments were performed to examine the effect of variation in input data parameters such as frame dimension, frame rate, number of frames, and background noise on accuracy of the trained model. Performance of the proposed model was analyzed and compared with respect to synthetic data generated by using rotating diffuser based simulation model. Robustness of the proposed strategy was also validated experimentally on practical data associated with identification of disease in seeds. Obtained results demonstrated that the proposed technique is accurate and can perform spatio-temporal classification and numerical indexing of the biospeckle data under varying experimental parameters. © 2023 Elsevier Ltd
Název v anglickém jazyce
Deep learning based processing framework for spatio-temporal analysis and classification of laser biospeckle data
Popis výsledku anglicky
Laser biospeckle is an advanced optical technique with the ability to non-destructively visualize various transient phenomenon via spatial and temporal statistics. However, accuracy of the existing image processing techniques used to process biospeckle data is hampered by various experimental and processing dependent factors. Therefore, in this work, a novel 3D convolution neural network (3D CNN) based deep learning (DL) architecture is developed for spatio-temporal analysis of biospeckle data in both qualitative and quantitative domains that effectively reduces errors introduced due to the influence of varying experimental parameters. Firstly, 3D CNN based image processing model is proposed for spatio-temporal analysis and classification of biospeckle data. Furthermore, a novel DL based numerical indexing strategy is developed for identification of level of activity in a sample. Finally, impact of varying experimental parameters on accuracy of the proposed technique is analyzed. In this direction, multiple experiments were performed to examine the effect of variation in input data parameters such as frame dimension, frame rate, number of frames, and background noise on accuracy of the trained model. Performance of the proposed model was analyzed and compared with respect to synthetic data generated by using rotating diffuser based simulation model. Robustness of the proposed strategy was also validated experimentally on practical data associated with identification of disease in seeds. Obtained results demonstrated that the proposed technique is accurate and can perform spatio-temporal classification and numerical indexing of the biospeckle data under varying experimental parameters. © 2023 Elsevier Ltd
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_069%2F0010054" target="_blank" >EF18_069/0010054: IT4Neuro(degeneration)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Optics and Laser Technology
ISSN
0030-3992
e-ISSN
1879-2545
Svazek periodika
169
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
"Article number: 110138"
Kód UT WoS článku
001158706500001
EID výsledku v databázi Scopus
2-s2.0-85172891539