Deep Unfolded Sparse Refinement Network Based Detection in Uplink Massive MIMO
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019257" target="_blank" >RIV/62690094:18450/22:50019257 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9755075" target="_blank" >https://ieeexplore.ieee.org/document/9755075</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TVT.2022.3166399" target="_blank" >10.1109/TVT.2022.3166399</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Unfolded Sparse Refinement Network Based Detection in Uplink Massive MIMO
Popis výsledku v původním jazyce
Massive multiple-input multiple-output (mMIMO) is a promising technique to realize the ever-increasing demand for high-speed data, quality of service (QoS), and energy efficiency for 5G and beyond wireless systems. However, the increased number of users in mMIMO systems significantly affects performance of the existing approximate matrix inversion based and matrix inversion less iterative symbol detection techniques. Conventional detection algorithms cannot learn the inter-relations of input-output parameters based on available data without having specific mathematical models of communication scenarios. Moreover, existing deep learning (DL) based symbol detection models lack in-network compression, resulting in large training time and high computational load while expected to be deployed in a low latency communication system. In this article, a sparse refinement architecture is proposed for symbol detection in uplink mMIMO. The proposed DL architecture requires less trainable parameters as compared to a conventional fully connected detection network and refines the estimated symbol vector in each layer. Convergence of the proposed symbol detection technique is analytically justified. An expression for the approximate upper bound on the BER is derived which is supported by simulations. The obtained results prove viability of the proposed symbol detection model as compared to the several existing state-of-art uplink mMIMO detection techniques, in terms of superior the error performance and low computational complexity.
Název v anglickém jazyce
Deep Unfolded Sparse Refinement Network Based Detection in Uplink Massive MIMO
Popis výsledku anglicky
Massive multiple-input multiple-output (mMIMO) is a promising technique to realize the ever-increasing demand for high-speed data, quality of service (QoS), and energy efficiency for 5G and beyond wireless systems. However, the increased number of users in mMIMO systems significantly affects performance of the existing approximate matrix inversion based and matrix inversion less iterative symbol detection techniques. Conventional detection algorithms cannot learn the inter-relations of input-output parameters based on available data without having specific mathematical models of communication scenarios. Moreover, existing deep learning (DL) based symbol detection models lack in-network compression, resulting in large training time and high computational load while expected to be deployed in a low latency communication system. In this article, a sparse refinement architecture is proposed for symbol detection in uplink mMIMO. The proposed DL architecture requires less trainable parameters as compared to a conventional fully connected detection network and refines the estimated symbol vector in each layer. Convergence of the proposed symbol detection technique is analytically justified. An expression for the approximate upper bound on the BER is derived which is supported by simulations. The obtained results prove viability of the proposed symbol detection model as compared to the several existing state-of-art uplink mMIMO detection techniques, in terms of superior the error performance and low computational complexity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Vehicular Technology
ISSN
0018-9545
e-ISSN
1939-9359
Svazek periodika
71
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
6825-6830
Kód UT WoS článku
000815676900103
EID výsledku v databázi Scopus
2-s2.0-85128292454