Multi-Classification of Imbalance Worm Ransomware in the IoMT System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019520" target="_blank" >RIV/62690094:18450/22:50019520 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/FAIA220282" target="_blank" >http://dx.doi.org/10.3233/FAIA220282</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FAIA220282" target="_blank" >10.3233/FAIA220282</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Classification of Imbalance Worm Ransomware in the IoMT System
Popis výsledku v původním jazyce
Worm-like ransomware strains spread quickly to critical systems such as IoMT without human interaction. Therefore, detecting different worm-like ransomware attacks during their spread is vital. Nevertheless, the low detection rate due to the imbalanced ransomware data and the detection systems' disability for multiclass simultaneous detection are two apparent problems. In this work, we proposed a new approach for multi-classifying ransomware using preprocessing, resampling, and different classifiers. The proposed system uses network traffic NetFlow data, which is privacy-friendly and not heavy. In the first phase, preprocessing techniques were used on the collected and aggregated ransomware traffic, and then an optimized Synthetic Minority Oversampling Technique (SMOTE) was used for resampling the low-class samples. After that, four classifiers were applied, namely, Bayes Net, Hoeffding Tree, K-Nearest Neighbor, and a lightweight Multi-Layered Perceptron (MLP). The experimental results showed that the efficient preprocessing ensured accurate and simultaneous ransomware detection while the resampling technique improved the detection rate, F1, and PRC curve. © 2022 The authors and IOS Press. All rights reserved.
Název v anglickém jazyce
Multi-Classification of Imbalance Worm Ransomware in the IoMT System
Popis výsledku anglicky
Worm-like ransomware strains spread quickly to critical systems such as IoMT without human interaction. Therefore, detecting different worm-like ransomware attacks during their spread is vital. Nevertheless, the low detection rate due to the imbalanced ransomware data and the detection systems' disability for multiclass simultaneous detection are two apparent problems. In this work, we proposed a new approach for multi-classifying ransomware using preprocessing, resampling, and different classifiers. The proposed system uses network traffic NetFlow data, which is privacy-friendly and not heavy. In the first phase, preprocessing techniques were used on the collected and aggregated ransomware traffic, and then an optimized Synthetic Minority Oversampling Technique (SMOTE) was used for resampling the low-class samples. After that, four classifiers were applied, namely, Bayes Net, Hoeffding Tree, K-Nearest Neighbor, and a lightweight Multi-Layered Perceptron (MLP). The experimental results showed that the efficient preprocessing ensured accurate and simultaneous ransomware detection while the resampling technique improved the detection rate, F1, and PRC curve. © 2022 The authors and IOS Press. All rights reserved.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Frontiers in Artificial Intelligence and Applications
ISBN
978-1-64368-316-4
ISSN
0922-6389
e-ISSN
1535-6698
Počet stran výsledku
11
Strana od-do
531-541
Název nakladatele
IOS Press BV
Místo vydání
Amsterdam
Místo konání akce
Kitakyushu
Datum konání akce
20. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—