A Multi-Tier Streaming Analytics Model of 0-Day Ransomware Detection Using Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017062" target="_blank" >RIV/62690094:18450/20:50017062 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/10/9/3210/htm" target="_blank" >https://www.mdpi.com/2076-3417/10/9/3210/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app10093210" target="_blank" >10.3390/app10093210</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Multi-Tier Streaming Analytics Model of 0-Day Ransomware Detection Using Machine Learning
Popis výsledku v původním jazyce
Desktop and portable platform-based information systems become the most tempting target of crypto and locker ransomware attacks during the last decades. Hence, researchers have developed anti-ransomware tools to assist the Windows platform at thwarting ransomware attacks, protecting the information, preserving the users' privacy, and securing the inter-related information systems through the Internet. Furthermore, they utilized machine learning to devote useful anti-ransomware tools that detect sophisticated versions. However, such anti-ransomware tools remain sub-optimal in efficacy, partial to analyzing ransomware traits, inactive to learn significant and imbalanced data streams, limited to attributing the versions' ancestor families, and indecisive about fusing the multi-descent versions. In this paper, we propose a hybrid machine learner model, which is a multi-tiered streaming analytics model that classifies various ransomware versions of 14 families by learning 24 static and dynamic traits. The proposed model classifies ransomware versions to their ancestor families numerally and fuses those of multi-descent families statistically. Thus, it classifies ransomware versions among 40K corpora of ransomware, malware, and good-ware versions through both semi-realistic and realistic environments. The supremacy of this ransomware streaming analytics model among competitive anti-ransomware technologies is proven experimentally and justified critically with the average of 97% classification accuracy, 2.4% mistake rate, and 0.34% miss rate under comparative and realistic test.
Název v anglickém jazyce
A Multi-Tier Streaming Analytics Model of 0-Day Ransomware Detection Using Machine Learning
Popis výsledku anglicky
Desktop and portable platform-based information systems become the most tempting target of crypto and locker ransomware attacks during the last decades. Hence, researchers have developed anti-ransomware tools to assist the Windows platform at thwarting ransomware attacks, protecting the information, preserving the users' privacy, and securing the inter-related information systems through the Internet. Furthermore, they utilized machine learning to devote useful anti-ransomware tools that detect sophisticated versions. However, such anti-ransomware tools remain sub-optimal in efficacy, partial to analyzing ransomware traits, inactive to learn significant and imbalanced data streams, limited to attributing the versions' ancestor families, and indecisive about fusing the multi-descent versions. In this paper, we propose a hybrid machine learner model, which is a multi-tiered streaming analytics model that classifies various ransomware versions of 14 families by learning 24 static and dynamic traits. The proposed model classifies ransomware versions to their ancestor families numerally and fuses those of multi-descent families statistically. Thus, it classifies ransomware versions among 40K corpora of ransomware, malware, and good-ware versions through both semi-realistic and realistic environments. The supremacy of this ransomware streaming analytics model among competitive anti-ransomware technologies is proven experimentally and justified critically with the average of 97% classification accuracy, 2.4% mistake rate, and 0.34% miss rate under comparative and realistic test.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20401 - Chemical engineering (plants, products)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED SCIENCES-BASEL
ISSN
2076-3417
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
"Article Number: 3210"
Kód UT WoS článku
000535541900223
EID výsledku v databázi Scopus
2-s2.0-85085074436