Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A mathematical fuzzy fusion framework for whole tumor segmentation in multimodal MRI using Nakagami imaging

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50019872" target="_blank" >RIV/62690094:18450/23:50019872 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0957417422024812?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417422024812?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eswa.2022.119462" target="_blank" >10.1016/j.eswa.2022.119462</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A mathematical fuzzy fusion framework for whole tumor segmentation in multimodal MRI using Nakagami imaging

  • Popis výsledku v původním jazyce

    Automated lesion segmentation has become one of the most important tasks for the experts and researchers dealing with intelligent image processing of brain magnetic resonance images in clinical and bio-medicine. Fluid attenuated inversion recovery (FLAIR) is the universally accepted sequence for highlighting the lesions while suppressing the surrounding cerebrospinal fluid to create utmost contrast; however, in some cases, FLAIR images are not enough to cover the whole lesions in contrast-based segmentation. Therefore, in this paper, we propose a mathematical fuzzy inference-based fusion framework to increase the dice score coefficient (DSC) of the segmentation of FLAIR sequences and to achieve the highest DSC to overcome the inconclusive FLAIR cases. Taken from the BraTS2012 training database, the sample insufficient FLAIR images and the corresponding sequences T1, T1c, and T2 containing high- and low-grade glioma are processed by our fully-mathematical Nakagami imaging method and the lesions are separately segmented and stored. The binary images, generated by the specialized fuzzy c-means segmentation, are fused by a mathematical pixel intensity and distance-based fuzzy inference system to reach the ground truth images with the highest accuracy possible. The average dice score, calculated by segmentation of all images in the BraTS 2012 training database, is computed as 92.78% after fusion of all sequences. As a promising framework, the outputs of this research would be so beneficial for the experts dealing with whole tumor segmentation despite inconclusive FLAIR images. © 2022 Elsevier Ltd

  • Název v anglickém jazyce

    A mathematical fuzzy fusion framework for whole tumor segmentation in multimodal MRI using Nakagami imaging

  • Popis výsledku anglicky

    Automated lesion segmentation has become one of the most important tasks for the experts and researchers dealing with intelligent image processing of brain magnetic resonance images in clinical and bio-medicine. Fluid attenuated inversion recovery (FLAIR) is the universally accepted sequence for highlighting the lesions while suppressing the surrounding cerebrospinal fluid to create utmost contrast; however, in some cases, FLAIR images are not enough to cover the whole lesions in contrast-based segmentation. Therefore, in this paper, we propose a mathematical fuzzy inference-based fusion framework to increase the dice score coefficient (DSC) of the segmentation of FLAIR sequences and to achieve the highest DSC to overcome the inconclusive FLAIR cases. Taken from the BraTS2012 training database, the sample insufficient FLAIR images and the corresponding sequences T1, T1c, and T2 containing high- and low-grade glioma are processed by our fully-mathematical Nakagami imaging method and the lesions are separately segmented and stored. The binary images, generated by the specialized fuzzy c-means segmentation, are fused by a mathematical pixel intensity and distance-based fuzzy inference system to reach the ground truth images with the highest accuracy possible. The average dice score, calculated by segmentation of all images in the BraTS 2012 training database, is computed as 92.78% after fusion of all sequences. As a promising framework, the outputs of this research would be so beneficial for the experts dealing with whole tumor segmentation despite inconclusive FLAIR images. © 2022 Elsevier Ltd

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Expert systems with applications

  • ISSN

    0957-4174

  • e-ISSN

    1873-6793

  • Svazek periodika

    216

  • Číslo periodika v rámci svazku

    April

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    14

  • Strana od-do

    "Article number: 119462"

  • Kód UT WoS článku

    000921156300001

  • EID výsledku v databázi Scopus

    2-s2.0-85145253495