Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Distribution-based imaging for multiple sclerosis lesion segmentation using specialized fuzzy 2-means powered by Nakagami transmutations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018070" target="_blank" >RIV/62690094:18450/21:50018070 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00179906:_____/21:10432655

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S156849462100404X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S156849462100404X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.asoc.2021.107481" target="_blank" >10.1016/j.asoc.2021.107481</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Distribution-based imaging for multiple sclerosis lesion segmentation using specialized fuzzy 2-means powered by Nakagami transmutations

  • Popis výsledku v původním jazyce

    Distribution-based imaging is a promising methodology mainly to differentiate suspicious regions from surrounding tissues by applying a distribution to the images vertically or horizontally, ideally in both directions. The methodology is very useful for contouring and highlighting desired regions even under near-zero contrast conditions; it also leads to flexible segmentation of the lesions by parametric kernels and provides robust results when supported by solid post-segmentation protocols. Given these benefits, what we propose in this research is a specialized fuzzy 2-means algorithm enhanced by parametric distribution-based imaging framework to offer novel solutions for multiple-sclerosis (MS) identification and segmentation from flair MRI images. The interchangeable distributions employed in this research are Rayleigh, Weibull, Gamma, Exponential and Chi-square, which all are mathematically transmuted from Nakagami distribution. The Nakagami m-parameter is defining the shape of the distributions unless a special parameter exists; while the highlighted areas are segmented by fuzzy 2-means. All parameters are optimized using a set of MICCAI 2016 MS lesion segmentation challenge taken by Siemens Verio 3T scanner and 0.8245 dice score is achieved by Nakagami-Gamma. However, when the optimized framework is tested by other 4 sets with same resolution and size properties, the highest average dice score 0.7113 is obtained by Nakagami–Rayleigh; while Nakagami-Gamma transmutation is resulted in 0.7112 dice score with significantly better sensitivity. © 2021 Elsevier B.V.

  • Název v anglickém jazyce

    Distribution-based imaging for multiple sclerosis lesion segmentation using specialized fuzzy 2-means powered by Nakagami transmutations

  • Popis výsledku anglicky

    Distribution-based imaging is a promising methodology mainly to differentiate suspicious regions from surrounding tissues by applying a distribution to the images vertically or horizontally, ideally in both directions. The methodology is very useful for contouring and highlighting desired regions even under near-zero contrast conditions; it also leads to flexible segmentation of the lesions by parametric kernels and provides robust results when supported by solid post-segmentation protocols. Given these benefits, what we propose in this research is a specialized fuzzy 2-means algorithm enhanced by parametric distribution-based imaging framework to offer novel solutions for multiple-sclerosis (MS) identification and segmentation from flair MRI images. The interchangeable distributions employed in this research are Rayleigh, Weibull, Gamma, Exponential and Chi-square, which all are mathematically transmuted from Nakagami distribution. The Nakagami m-parameter is defining the shape of the distributions unless a special parameter exists; while the highlighted areas are segmented by fuzzy 2-means. All parameters are optimized using a set of MICCAI 2016 MS lesion segmentation challenge taken by Siemens Verio 3T scanner and 0.8245 dice score is achieved by Nakagami-Gamma. However, when the optimized framework is tested by other 4 sets with same resolution and size properties, the highest average dice score 0.7113 is obtained by Nakagami–Rayleigh; while Nakagami-Gamma transmutation is resulted in 0.7112 dice score with significantly better sensitivity. © 2021 Elsevier B.V.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF18_069%2F0010054" target="_blank" >EF18_069/0010054: IT4Neuro(degeneration)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied soft computing

  • ISSN

    1568-4946

  • e-ISSN

  • Svazek periodika

    108

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    "Article number 107481"

  • Kód UT WoS článku

    000663564800014

  • EID výsledku v databázi Scopus

    2-s2.0-85105567432