Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Nakagami-Fuzzy imaging framework for precise lesion segmentation in MRI

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00179906%3A_____%2F22%3A10444561" target="_blank" >RIV/00179906:_____/22:10444561 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62690094:18450/22:50019115 RIV/00216208:11150/22:10444561

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=s_yllkv1C_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=s_yllkv1C_</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.patcog.2022.108675" target="_blank" >10.1016/j.patcog.2022.108675</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Nakagami-Fuzzy imaging framework for precise lesion segmentation in MRI

  • Popis výsledku v původním jazyce

    Nakagami distribution and related imaging methods are very efficient in diagnostic ultrasonography for visualization and characterization of tissues for years. Abnormalities in tissues are distinguished from surrounding cells by application of the distribution ruled by the Nakagami m-parameter. The potential of discrimination in ultrasonography enables intelligent segmentation of lesions by other diagnostic tools and the imaging technique is very promising in other areas of medicine, like magnetic resonance imaging (MRI) for brain lesion identification, as presented in this paper. Therefore, we propose a novel NakagamiFuzzy imaging framework for intelligent and fully automated suspicious region segmentation from axial FLAIR MRI images exhibiting brain tumor characteristics to satisfy ground truth images with different precision levels. The images from MRI data set are processed by applying Nakagami distribution from pre-Rayleigh to post-Rayleigh for adjusting m-parameter. Amorphous and non-homogenous suspicious regions revealed by Nakagami imaging are segmented using customized Fuzzy 2-means to compare with two types of binary ground truths. The framework we propose is an outstanding example of fuzzy-based expert systems providing an average of 92.61% dice score for the main clinical experiment we conducted using the images and two types of ground truths provided by University of Hospital, Hradec Kralove. We also tested our framework by the BraTS 2012 and BraTS 2020 datasets and achieved an average of 91.88% and 89.25% dice scores respectively, which are competitive among the relevant researches.(c) 2022 Elsevier Ltd. All rights reserved.

  • Název v anglickém jazyce

    Nakagami-Fuzzy imaging framework for precise lesion segmentation in MRI

  • Popis výsledku anglicky

    Nakagami distribution and related imaging methods are very efficient in diagnostic ultrasonography for visualization and characterization of tissues for years. Abnormalities in tissues are distinguished from surrounding cells by application of the distribution ruled by the Nakagami m-parameter. The potential of discrimination in ultrasonography enables intelligent segmentation of lesions by other diagnostic tools and the imaging technique is very promising in other areas of medicine, like magnetic resonance imaging (MRI) for brain lesion identification, as presented in this paper. Therefore, we propose a novel NakagamiFuzzy imaging framework for intelligent and fully automated suspicious region segmentation from axial FLAIR MRI images exhibiting brain tumor characteristics to satisfy ground truth images with different precision levels. The images from MRI data set are processed by applying Nakagami distribution from pre-Rayleigh to post-Rayleigh for adjusting m-parameter. Amorphous and non-homogenous suspicious regions revealed by Nakagami imaging are segmented using customized Fuzzy 2-means to compare with two types of binary ground truths. The framework we propose is an outstanding example of fuzzy-based expert systems providing an average of 92.61% dice score for the main clinical experiment we conducted using the images and two types of ground truths provided by University of Hospital, Hradec Kralove. We also tested our framework by the BraTS 2012 and BraTS 2020 datasets and achieved an average of 91.88% and 89.25% dice scores respectively, which are competitive among the relevant researches.(c) 2022 Elsevier Ltd. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF18_069%2F0010054" target="_blank" >EF18_069/0010054: IT4Neuro(degeneration)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Pattern Recognition

  • ISSN

    0031-3203

  • e-ISSN

    1873-5142

  • Svazek periodika

    128

  • Číslo periodika v rámci svazku

    AUG

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    17

  • Strana od-do

    108675

  • Kód UT WoS článku

    000793702800003

  • EID výsledku v databázi Scopus

    2-s2.0-85127799544