Nakagami-Fuzzy imaging framework for precise lesion segmentation in MRI
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00179906%3A_____%2F22%3A10444561" target="_blank" >RIV/00179906:_____/22:10444561 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62690094:18450/22:50019115 RIV/00216208:11150/22:10444561
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=s_yllkv1C_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=s_yllkv1C_</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.patcog.2022.108675" target="_blank" >10.1016/j.patcog.2022.108675</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nakagami-Fuzzy imaging framework for precise lesion segmentation in MRI
Popis výsledku v původním jazyce
Nakagami distribution and related imaging methods are very efficient in diagnostic ultrasonography for visualization and characterization of tissues for years. Abnormalities in tissues are distinguished from surrounding cells by application of the distribution ruled by the Nakagami m-parameter. The potential of discrimination in ultrasonography enables intelligent segmentation of lesions by other diagnostic tools and the imaging technique is very promising in other areas of medicine, like magnetic resonance imaging (MRI) for brain lesion identification, as presented in this paper. Therefore, we propose a novel NakagamiFuzzy imaging framework for intelligent and fully automated suspicious region segmentation from axial FLAIR MRI images exhibiting brain tumor characteristics to satisfy ground truth images with different precision levels. The images from MRI data set are processed by applying Nakagami distribution from pre-Rayleigh to post-Rayleigh for adjusting m-parameter. Amorphous and non-homogenous suspicious regions revealed by Nakagami imaging are segmented using customized Fuzzy 2-means to compare with two types of binary ground truths. The framework we propose is an outstanding example of fuzzy-based expert systems providing an average of 92.61% dice score for the main clinical experiment we conducted using the images and two types of ground truths provided by University of Hospital, Hradec Kralove. We also tested our framework by the BraTS 2012 and BraTS 2020 datasets and achieved an average of 91.88% and 89.25% dice scores respectively, which are competitive among the relevant researches.(c) 2022 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Nakagami-Fuzzy imaging framework for precise lesion segmentation in MRI
Popis výsledku anglicky
Nakagami distribution and related imaging methods are very efficient in diagnostic ultrasonography for visualization and characterization of tissues for years. Abnormalities in tissues are distinguished from surrounding cells by application of the distribution ruled by the Nakagami m-parameter. The potential of discrimination in ultrasonography enables intelligent segmentation of lesions by other diagnostic tools and the imaging technique is very promising in other areas of medicine, like magnetic resonance imaging (MRI) for brain lesion identification, as presented in this paper. Therefore, we propose a novel NakagamiFuzzy imaging framework for intelligent and fully automated suspicious region segmentation from axial FLAIR MRI images exhibiting brain tumor characteristics to satisfy ground truth images with different precision levels. The images from MRI data set are processed by applying Nakagami distribution from pre-Rayleigh to post-Rayleigh for adjusting m-parameter. Amorphous and non-homogenous suspicious regions revealed by Nakagami imaging are segmented using customized Fuzzy 2-means to compare with two types of binary ground truths. The framework we propose is an outstanding example of fuzzy-based expert systems providing an average of 92.61% dice score for the main clinical experiment we conducted using the images and two types of ground truths provided by University of Hospital, Hradec Kralove. We also tested our framework by the BraTS 2012 and BraTS 2020 datasets and achieved an average of 91.88% and 89.25% dice scores respectively, which are competitive among the relevant researches.(c) 2022 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_069%2F0010054" target="_blank" >EF18_069/0010054: IT4Neuro(degeneration)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Pattern Recognition
ISSN
0031-3203
e-ISSN
1873-5142
Svazek periodika
128
Číslo periodika v rámci svazku
AUG
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
108675
Kód UT WoS článku
000793702800003
EID výsledku v databázi Scopus
2-s2.0-85127799544