Study on Sperm-Cell Detection Using YOLOv5 Architecture with Labaled Dataset
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020215" target="_blank" >RIV/62690094:18450/23:50020215 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-4425/14/2/451" target="_blank" >https://www.mdpi.com/2073-4425/14/2/451</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/genes14020451" target="_blank" >10.3390/genes14020451</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Study on Sperm-Cell Detection Using YOLOv5 Architecture with Labaled Dataset
Popis výsledku v původním jazyce
Infertility has recently emerged as a severe medical problem. The essential elements in male infertility are sperm morphology, sperm motility, and sperm density. In order to analyze sperm motility, density, and morphology, laboratory experts do a semen analysis. However, it is simple to err when using a subjective interpretation based on laboratory observation. In this work, a computer-aided sperm count estimation approach is suggested to lessen the impact of experts in semen analysis. Object detection techniques concentrating on sperm motility estimate the number of active sperm in the semen. This study provides an overview of other techniques that we can compare. The Visem dataset from the Association for Computing Machinery was used to test the proposed strategy. We created a labelled dataset to prove that our network can detect sperms in images. The best not-super tuned result is mAP (Formula presented.). © 2023 by the authors.
Název v anglickém jazyce
Study on Sperm-Cell Detection Using YOLOv5 Architecture with Labaled Dataset
Popis výsledku anglicky
Infertility has recently emerged as a severe medical problem. The essential elements in male infertility are sperm morphology, sperm motility, and sperm density. In order to analyze sperm motility, density, and morphology, laboratory experts do a semen analysis. However, it is simple to err when using a subjective interpretation based on laboratory observation. In this work, a computer-aided sperm count estimation approach is suggested to lessen the impact of experts in semen analysis. Object detection techniques concentrating on sperm motility estimate the number of active sperm in the semen. This study provides an overview of other techniques that we can compare. The Visem dataset from the Association for Computing Machinery was used to test the proposed strategy. We created a labelled dataset to prove that our network can detect sperms in images. The best not-super tuned result is mAP (Formula presented.). © 2023 by the authors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Genes
ISSN
2073-4425
e-ISSN
2073-4425
Svazek periodika
14
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
"Article number: 451"
Kód UT WoS článku
000945699200001
EID výsledku v databázi Scopus
2-s2.0-85148882863