Sperm-cell Detection Using YOLOv5 Architecture
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019256" target="_blank" >RIV/62690094:18450/22:50019256 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-07802-6_27" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-07802-6_27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-07802-6_27" target="_blank" >10.1007/978-3-031-07802-6_27</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sperm-cell Detection Using YOLOv5 Architecture
Popis výsledku v původním jazyce
Infertility has become a severe health issue in recent years. Sperm morphology, sperm motility, and sperm density are the most critical factors in male infertility. As a result, sperm motility, density, and morphology are examined in semen analysis carried out by laboratory professionals. However, applying a subjective analysis based on laboratory observation is easy to make a mistake. To reduce the effect of specialists in semen analysis, a computer-aided sperm count estimation approach is proposed in this work. The quantity of active sperm in the semen is determined using object detection methods focusing on sperm motility. The proposed strategy was tested using data from the Visem dataset provided by Association for Computing Machinery. We created a small sample custom dataset to prove that our network will be able to detect sperms in images. The best not-super tuned result is mAP 72.15. © 2022, Springer Nature Switzerland AG.
Název v anglickém jazyce
Sperm-cell Detection Using YOLOv5 Architecture
Popis výsledku anglicky
Infertility has become a severe health issue in recent years. Sperm morphology, sperm motility, and sperm density are the most critical factors in male infertility. As a result, sperm motility, density, and morphology are examined in semen analysis carried out by laboratory professionals. However, applying a subjective analysis based on laboratory observation is easy to make a mistake. To reduce the effect of specialists in semen analysis, a computer-aided sperm count estimation approach is proposed in this work. The quantity of active sperm in the semen is determined using object detection methods focusing on sperm motility. The proposed strategy was tested using data from the Visem dataset provided by Association for Computing Machinery. We created a small sample custom dataset to prove that our network will be able to detect sperms in images. The best not-super tuned result is mAP 72.15. © 2022, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-031-07801-9
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
12
Strana od-do
319-330
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Švýcarsko
Místo konání akce
Grand Canaria
Datum konání akce
27. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000871766000027