Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Sperm-cell Detection Using YOLOv5 Architecture

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019256" target="_blank" >RIV/62690094:18450/22:50019256 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-07802-6_27" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-07802-6_27</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-07802-6_27" target="_blank" >10.1007/978-3-031-07802-6_27</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sperm-cell Detection Using YOLOv5 Architecture

  • Popis výsledku v původním jazyce

    Infertility has become a severe health issue in recent years. Sperm morphology, sperm motility, and sperm density are the most critical factors in male infertility. As a result, sperm motility, density, and morphology are examined in semen analysis carried out by laboratory professionals. However, applying a subjective analysis based on laboratory observation is easy to make a mistake. To reduce the effect of specialists in semen analysis, a computer-aided sperm count estimation approach is proposed in this work. The quantity of active sperm in the semen is determined using object detection methods focusing on sperm motility. The proposed strategy was tested using data from the Visem dataset provided by Association for Computing Machinery. We created a small sample custom dataset to prove that our network will be able to detect sperms in images. The best not-super tuned result is mAP 72.15. © 2022, Springer Nature Switzerland AG.

  • Název v anglickém jazyce

    Sperm-cell Detection Using YOLOv5 Architecture

  • Popis výsledku anglicky

    Infertility has become a severe health issue in recent years. Sperm morphology, sperm motility, and sperm density are the most critical factors in male infertility. As a result, sperm motility, density, and morphology are examined in semen analysis carried out by laboratory professionals. However, applying a subjective analysis based on laboratory observation is easy to make a mistake. To reduce the effect of specialists in semen analysis, a computer-aided sperm count estimation approach is proposed in this work. The quantity of active sperm in the semen is determined using object detection methods focusing on sperm motility. The proposed strategy was tested using data from the Visem dataset provided by Association for Computing Machinery. We created a small sample custom dataset to prove that our network will be able to detect sperms in images. The best not-super tuned result is mAP 72.15. © 2022, Springer Nature Switzerland AG.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

  • ISBN

    978-3-031-07801-9

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    12

  • Strana od-do

    319-330

  • Název nakladatele

    Springer Science and Business Media Deutschland GmbH

  • Místo vydání

    Švýcarsko

  • Místo konání akce

    Grand Canaria

  • Datum konání akce

    27. 6. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000871766000027