Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

2pClPr: A Two-Phase Clump Profiler for Segmentation of Cancer Cells in Fluorescence Microscopic Images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020459" target="_blank" >RIV/62690094:18450/23:50020459 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10130458" target="_blank" >https://ieeexplore.ieee.org/document/10130458</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIM.2023.3277975" target="_blank" >10.1109/TIM.2023.3277975</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    2pClPr: A Two-Phase Clump Profiler for Segmentation of Cancer Cells in Fluorescence Microscopic Images

  • Popis výsledku v původním jazyce

    Cancer cell segmentation is challenging since they grow in tightly packed colonies (clumps), causing adjacent cells to overlap. In this work, we proposed an automated vision-based analysis framework: a two-phase clump profiler (2pClPr) for the segmentation of cancer cells in fluorescence microscopy images. In the first phase, we proposed a deep learning (DL) network, Multiscale Cell-Net, for coarse segmentation. Another framework, multiscale region proposal network (MS-RPN), was simultaneously trained in parallel to Multiscale Cell-Net to generate seeds for each cell. The coarse segmentation map was unable to segment the complex clumps. We proposed a novel metric, the Irregularity factor (Iftr), to identify those complex clumps. Once identified, we mapped them with the seed points generated by MS-RPN. These seeds served as the initialization points for our proposed level-set framework: weighing repelling force embedded-level-set method (WRFe-LSM) which segments the identified complex clumps in the second phase of segmentation. The final segmentation map was generated with the segmented cells from the two phases. We conducted extensive experiments on our private dataset comprising images from four complex cancer cell lines and obtained an aggregated Jaccard index (AJI) of 76.6%, 72.9%, 75.5%, and 69.7% on HeLa, MDA-MB-468, MDA-MB-231, and T-47D, respectively. Furthermore, to show the generalization ability of 2pClPr, we conducted comparative experiments on a publicly available hematoxylin-eosin (H&amp;E)-stained histopathological images dataset (MoNuSeg) and obtained an AJI of 66.2%. A detailed evaluation of segmentation performance on both the datasets shows that 2pClPr is robust and effective. © 1963-2012 IEEE.

  • Název v anglickém jazyce

    2pClPr: A Two-Phase Clump Profiler for Segmentation of Cancer Cells in Fluorescence Microscopic Images

  • Popis výsledku anglicky

    Cancer cell segmentation is challenging since they grow in tightly packed colonies (clumps), causing adjacent cells to overlap. In this work, we proposed an automated vision-based analysis framework: a two-phase clump profiler (2pClPr) for the segmentation of cancer cells in fluorescence microscopy images. In the first phase, we proposed a deep learning (DL) network, Multiscale Cell-Net, for coarse segmentation. Another framework, multiscale region proposal network (MS-RPN), was simultaneously trained in parallel to Multiscale Cell-Net to generate seeds for each cell. The coarse segmentation map was unable to segment the complex clumps. We proposed a novel metric, the Irregularity factor (Iftr), to identify those complex clumps. Once identified, we mapped them with the seed points generated by MS-RPN. These seeds served as the initialization points for our proposed level-set framework: weighing repelling force embedded-level-set method (WRFe-LSM) which segments the identified complex clumps in the second phase of segmentation. The final segmentation map was generated with the segmented cells from the two phases. We conducted extensive experiments on our private dataset comprising images from four complex cancer cell lines and obtained an aggregated Jaccard index (AJI) of 76.6%, 72.9%, 75.5%, and 69.7% on HeLa, MDA-MB-468, MDA-MB-231, and T-47D, respectively. Furthermore, to show the generalization ability of 2pClPr, we conducted comparative experiments on a publicly available hematoxylin-eosin (H&amp;E)-stained histopathological images dataset (MoNuSeg) and obtained an AJI of 66.2%. A detailed evaluation of segmentation performance on both the datasets shows that 2pClPr is robust and effective. © 1963-2012 IEEE.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Instrumentation and Measurement

  • ISSN

    0018-9456

  • e-ISSN

    1557-9662

  • Svazek periodika

    72

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    "Article number: 5014914"

  • Kód UT WoS článku

    001000758600003

  • EID výsledku v databázi Scopus

    2-s2.0-85161010292