2pClPr: A Two-Phase Clump Profiler for Segmentation of Cancer Cells in Fluorescence Microscopic Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020459" target="_blank" >RIV/62690094:18450/23:50020459 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10130458" target="_blank" >https://ieeexplore.ieee.org/document/10130458</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TIM.2023.3277975" target="_blank" >10.1109/TIM.2023.3277975</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
2pClPr: A Two-Phase Clump Profiler for Segmentation of Cancer Cells in Fluorescence Microscopic Images
Popis výsledku v původním jazyce
Cancer cell segmentation is challenging since they grow in tightly packed colonies (clumps), causing adjacent cells to overlap. In this work, we proposed an automated vision-based analysis framework: a two-phase clump profiler (2pClPr) for the segmentation of cancer cells in fluorescence microscopy images. In the first phase, we proposed a deep learning (DL) network, Multiscale Cell-Net, for coarse segmentation. Another framework, multiscale region proposal network (MS-RPN), was simultaneously trained in parallel to Multiscale Cell-Net to generate seeds for each cell. The coarse segmentation map was unable to segment the complex clumps. We proposed a novel metric, the Irregularity factor (Iftr), to identify those complex clumps. Once identified, we mapped them with the seed points generated by MS-RPN. These seeds served as the initialization points for our proposed level-set framework: weighing repelling force embedded-level-set method (WRFe-LSM) which segments the identified complex clumps in the second phase of segmentation. The final segmentation map was generated with the segmented cells from the two phases. We conducted extensive experiments on our private dataset comprising images from four complex cancer cell lines and obtained an aggregated Jaccard index (AJI) of 76.6%, 72.9%, 75.5%, and 69.7% on HeLa, MDA-MB-468, MDA-MB-231, and T-47D, respectively. Furthermore, to show the generalization ability of 2pClPr, we conducted comparative experiments on a publicly available hematoxylin-eosin (H&E)-stained histopathological images dataset (MoNuSeg) and obtained an AJI of 66.2%. A detailed evaluation of segmentation performance on both the datasets shows that 2pClPr is robust and effective. © 1963-2012 IEEE.
Název v anglickém jazyce
2pClPr: A Two-Phase Clump Profiler for Segmentation of Cancer Cells in Fluorescence Microscopic Images
Popis výsledku anglicky
Cancer cell segmentation is challenging since they grow in tightly packed colonies (clumps), causing adjacent cells to overlap. In this work, we proposed an automated vision-based analysis framework: a two-phase clump profiler (2pClPr) for the segmentation of cancer cells in fluorescence microscopy images. In the first phase, we proposed a deep learning (DL) network, Multiscale Cell-Net, for coarse segmentation. Another framework, multiscale region proposal network (MS-RPN), was simultaneously trained in parallel to Multiscale Cell-Net to generate seeds for each cell. The coarse segmentation map was unable to segment the complex clumps. We proposed a novel metric, the Irregularity factor (Iftr), to identify those complex clumps. Once identified, we mapped them with the seed points generated by MS-RPN. These seeds served as the initialization points for our proposed level-set framework: weighing repelling force embedded-level-set method (WRFe-LSM) which segments the identified complex clumps in the second phase of segmentation. The final segmentation map was generated with the segmented cells from the two phases. We conducted extensive experiments on our private dataset comprising images from four complex cancer cell lines and obtained an aggregated Jaccard index (AJI) of 76.6%, 72.9%, 75.5%, and 69.7% on HeLa, MDA-MB-468, MDA-MB-231, and T-47D, respectively. Furthermore, to show the generalization ability of 2pClPr, we conducted comparative experiments on a publicly available hematoxylin-eosin (H&E)-stained histopathological images dataset (MoNuSeg) and obtained an AJI of 66.2%. A detailed evaluation of segmentation performance on both the datasets shows that 2pClPr is robust and effective. © 1963-2012 IEEE.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Instrumentation and Measurement
ISSN
0018-9456
e-ISSN
1557-9662
Svazek periodika
72
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
"Article number: 5014914"
Kód UT WoS článku
001000758600003
EID výsledku v databázi Scopus
2-s2.0-85161010292