ANALYSIS OF THE EFFECT OF VARIOUS MENTAL TASKS ON THE EEG SIGNALS’ COMPLEXITY
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021440" target="_blank" >RIV/62690094:18450/24:50021440 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.worldscientific.com/doi/10.1142/S0218348X24500683" target="_blank" >https://www.worldscientific.com/doi/10.1142/S0218348X24500683</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218348X24500683" target="_blank" >10.1142/S0218348X24500683</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ANALYSIS OF THE EFFECT OF VARIOUS MENTAL TASKS ON THE EEG SIGNALS’ COMPLEXITY
Popis výsledku v původním jazyce
Analysis of the brain activity in different mental tasks is an important area of research. We used complexity-based analysis to study the changes in brain activity in four mental tasks: relaxation, Stroop color-word, mirror image recognition, and arithmetic tasks. We used fractal theory, sample entropy, and approximate entropy to analyze the changes in electroencephalogram (EEG) signals between different tasks. Our analysis showed that by moving from relaxation to the Stroop color-word, arithmetic, and mirror image recognition tasks, the complexity of EEG signals increases, respectively, reflecting rising brain activity between these conditions. Furthermore, only the fractal theory could decode the significant changes in brain activity between different conditions. Similar analyses can be done to decode the brain activity in case of other conditions. © The Author(s).
Název v anglickém jazyce
ANALYSIS OF THE EFFECT OF VARIOUS MENTAL TASKS ON THE EEG SIGNALS’ COMPLEXITY
Popis výsledku anglicky
Analysis of the brain activity in different mental tasks is an important area of research. We used complexity-based analysis to study the changes in brain activity in four mental tasks: relaxation, Stroop color-word, mirror image recognition, and arithmetic tasks. We used fractal theory, sample entropy, and approximate entropy to analyze the changes in electroencephalogram (EEG) signals between different tasks. Our analysis showed that by moving from relaxation to the Stroop color-word, arithmetic, and mirror image recognition tasks, the complexity of EEG signals increases, respectively, reflecting rising brain activity between these conditions. Furthermore, only the fractal theory could decode the significant changes in brain activity between different conditions. Similar analyses can be done to decode the brain activity in case of other conditions. © The Author(s).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fractals
ISSN
0218-348X
e-ISSN
1793-6543
Svazek periodika
32
Číslo periodika v rámci svazku
03
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
7
Strana od-do
"Article number: 2450068"
Kód UT WoS článku
001198645800005
EID výsledku v databázi Scopus
2-s2.0-85189979333