Explainable Machine Learning for Intrusion Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021581" target="_blank" >RIV/62690094:18450/24:50021581 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-981-97-4677-4_11" target="_blank" >http://dx.doi.org/10.1007/978-981-97-4677-4_11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-97-4677-4_11" target="_blank" >10.1007/978-981-97-4677-4_11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Explainable Machine Learning for Intrusion Detection
Popis výsledku v původním jazyce
Intrusion detection systems (IDS) are essential tools to maintain robust cybersecurity. Machine learning (ML)-based IDS providespromising results. However, such IDS are recognized as black-box andlack trust and transparency. There is a limited number of explainableIDS (X-IDS). Moreover, several X-IDS used outdated datasets. Somepapers used deep neural network which is computationally expensive.This paper proposes lightweight tree-based X-IDS using a recent IDSdataset. We explore the effectiveness of explainable artificial intelligence(XAI) techniques in increasing ML-based IDS transparency. Four MLalgorithms are employed; viz. LightGBM, random forests, AdaBoost,and XGBoost; to classify a given network flow as benign or malicious.Network flows extracted from the CSE-CIC-IDS2018 dataset are used toevaluate the IDS models. The best F1-score results of 0.979 and 0.978are achieved with LightGBM and XGBoost, respectively. We use SHapleyAdditive exPlanations (SHAP) and Local Model-Agnostic Explanations(LIME) techniques to provide global and local explanations for predictions made by the LightGBM. The obtained explanations in the form ofgraphs provide measurable insights for cybersecurity experts regardingthe most important features that impact the detection of intrusions.
Název v anglickém jazyce
Explainable Machine Learning for Intrusion Detection
Popis výsledku anglicky
Intrusion detection systems (IDS) are essential tools to maintain robust cybersecurity. Machine learning (ML)-based IDS providespromising results. However, such IDS are recognized as black-box andlack trust and transparency. There is a limited number of explainableIDS (X-IDS). Moreover, several X-IDS used outdated datasets. Somepapers used deep neural network which is computationally expensive.This paper proposes lightweight tree-based X-IDS using a recent IDSdataset. We explore the effectiveness of explainable artificial intelligence(XAI) techniques in increasing ML-based IDS transparency. Four MLalgorithms are employed; viz. LightGBM, random forests, AdaBoost,and XGBoost; to classify a given network flow as benign or malicious.Network flows extracted from the CSE-CIC-IDS2018 dataset are used toevaluate the IDS models. The best F1-score results of 0.979 and 0.978are achieved with LightGBM and XGBoost, respectively. We use SHapleyAdditive exPlanations (SHAP) and Local Model-Agnostic Explanations(LIME) techniques to provide global and local explanations for predictions made by the LightGBM. The obtained explanations in the form ofgraphs provide measurable insights for cybersecurity experts regardingthe most important features that impact the detection of intrusions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Artificial Intelligence, Theory and Applications
ISBN
978-981-9746-76-7
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
13
Strana od-do
122-134
Název nakladatele
Springer Nature
Místo vydání
Berlín
Místo konání akce
Hradec Králové, Czech Republic
Datum konání akce
10. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001315630900011