Enhancing DBSCAN Clustering for Fingerprint-Based Localization With a Context Similarity Coefficient-Based Similarity Measure Metric
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021674" target="_blank" >RIV/62690094:18450/24:50021674 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10643127" target="_blank" >https://ieeexplore.ieee.org/document/10643127</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3446674" target="_blank" >10.1109/ACCESS.2024.3446674</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing DBSCAN Clustering for Fingerprint-Based Localization With a Context Similarity Coefficient-Based Similarity Measure Metric
Popis výsledku v původním jazyce
In fingerprint-based localization systems, clustering fingerprint databases is a proposed technique for improving localization accuracy while reducing localization time. Among various clustering algorithms, density-based spatial clustering of applications with noise (DBSCAN) stands out for its robustness to outliers and ability to accommodate fingerprint databases of various shapes. However, the clustering performance of the DBSCAN algorithm is heavily influenced by the type of similarity measure metric used, with most researchers using distance-based metrics. This paper aims to enhance DBSCAN clustering by using a pattern-based metric known as the context similarity coefficient (CSC) instead of distance-based metrics. The CSC metric examines received signal strength (RSS) measurement patterns that form fingerprint vectors and assesses both linear and non-linear relationships between these vectors to determine similarity. Four publicly available fingerprint databases were used to evaluate the clustering performance with silhouette scores as a performance metric. The performance of the DBSCAN algorithm with the CSC metric is determined and compared to Euclidean and Manhattan distances as similarity measure metrics. Simulation results indicate that achieving good clustering performance with the DBSCAN algorithm requires generating three or fewer clusters. The proposed CSC metric demonstrated the best clustering performance in two of four fingerprint databases and the second-best in another. However, computational complexity comparisons reveal that the CSC metric is highly computationally intensive and is suggested to be used on small to medium-sized fingerprint databases generated using an odd number of wireless APs deployed in a non-uniform or non-grid-like distribution. © 2013 IEEE.
Název v anglickém jazyce
Enhancing DBSCAN Clustering for Fingerprint-Based Localization With a Context Similarity Coefficient-Based Similarity Measure Metric
Popis výsledku anglicky
In fingerprint-based localization systems, clustering fingerprint databases is a proposed technique for improving localization accuracy while reducing localization time. Among various clustering algorithms, density-based spatial clustering of applications with noise (DBSCAN) stands out for its robustness to outliers and ability to accommodate fingerprint databases of various shapes. However, the clustering performance of the DBSCAN algorithm is heavily influenced by the type of similarity measure metric used, with most researchers using distance-based metrics. This paper aims to enhance DBSCAN clustering by using a pattern-based metric known as the context similarity coefficient (CSC) instead of distance-based metrics. The CSC metric examines received signal strength (RSS) measurement patterns that form fingerprint vectors and assesses both linear and non-linear relationships between these vectors to determine similarity. Four publicly available fingerprint databases were used to evaluate the clustering performance with silhouette scores as a performance metric. The performance of the DBSCAN algorithm with the CSC metric is determined and compared to Euclidean and Manhattan distances as similarity measure metrics. Simulation results indicate that achieving good clustering performance with the DBSCAN algorithm requires generating three or fewer clusters. The proposed CSC metric demonstrated the best clustering performance in two of four fingerprint databases and the second-best in another. However, computational complexity comparisons reveal that the CSC metric is highly computationally intensive and is suggested to be used on small to medium-sized fingerprint databases generated using an odd number of wireless APs deployed in a non-uniform or non-grid-like distribution. © 2013 IEEE.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
12
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
117298-117307
Kód UT WoS článku
001303387700001
EID výsledku v databázi Scopus
2-s2.0-85201747838