Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improved indoor localization using k-medoids and k-nearest neighbour algorithms with context similarity coefficient-based fingerprint similarity metric

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021943" target="_blank" >RIV/62690094:18450/24:50021943 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/tje2.70023" target="_blank" >https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/tje2.70023</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1049/tje2.70023" target="_blank" >10.1049/tje2.70023</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improved indoor localization using k-medoids and k-nearest neighbour algorithms with context similarity coefficient-based fingerprint similarity metric

  • Popis výsledku v původním jazyce

    Fingerprint database clustering and localization using k-medoids and k-nearest neighbour (k-NN) algorithms respectively typically use distance-based fingerprint similarity metrics, with their performances dependent on the type of distance metric used. This paper proposes employing a pattern-based metric, the context similarity coefficient (CSC), for both algorithms instead of traditional distance-based metrics. The CSC accounts for fingerprint behaviour and the non-linear relationships among fingerprints during the similarity measurement. The performance of both algorithms with the CSC as the similarity metric is evaluated on four publicly available fingerprint databases, using position root mean square error (RMSE) and silhouette score as performance metrics. These results are compared to those of the same algorithms using five distance-based metrics: Euclidean, square Euclidean, Manhattan, cosine, and Chebyshev distances. The k-medoids algorithm with CSC shows moderate clustering performance compared to the five distance-based metrics considered. However, when combined with the k-NN algorithm also using CSC, it achieves the highest localization accuracy, with at least a 29% improvement in position RMSE across all four databases. The results indicate that while k-medoids with CSC may not create well-separated clusters, combining it with the k-NN algorithm with CSC as its similarity metric significantly enhances localization accuracy compared to distance-based metrics.

  • Název v anglickém jazyce

    Improved indoor localization using k-medoids and k-nearest neighbour algorithms with context similarity coefficient-based fingerprint similarity metric

  • Popis výsledku anglicky

    Fingerprint database clustering and localization using k-medoids and k-nearest neighbour (k-NN) algorithms respectively typically use distance-based fingerprint similarity metrics, with their performances dependent on the type of distance metric used. This paper proposes employing a pattern-based metric, the context similarity coefficient (CSC), for both algorithms instead of traditional distance-based metrics. The CSC accounts for fingerprint behaviour and the non-linear relationships among fingerprints during the similarity measurement. The performance of both algorithms with the CSC as the similarity metric is evaluated on four publicly available fingerprint databases, using position root mean square error (RMSE) and silhouette score as performance metrics. These results are compared to those of the same algorithms using five distance-based metrics: Euclidean, square Euclidean, Manhattan, cosine, and Chebyshev distances. The k-medoids algorithm with CSC shows moderate clustering performance compared to the five distance-based metrics considered. However, when combined with the k-NN algorithm also using CSC, it achieves the highest localization accuracy, with at least a 29% improvement in position RMSE across all four databases. The results indicate that while k-medoids with CSC may not create well-separated clusters, combining it with the k-NN algorithm with CSC as its similarity metric significantly enhances localization accuracy compared to distance-based metrics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF ENGINEERING-JOE

  • ISSN

    2051-3305

  • e-ISSN

    2051-3305

  • Svazek periodika

    2024

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    "Article Number: e70023"

  • Kód UT WoS článku

    001368768900001

  • EID výsledku v databázi Scopus