From Bias to Brilliance: The Impact of Artificial Intelligence Usage on Recruitment Biases in China
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021677" target="_blank" >RIV/62690094:18450/24:50021677 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10634779" target="_blank" >https://ieeexplore.ieee.org/document/10634779</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TEM.2024.3442618" target="_blank" >10.1109/TEM.2024.3442618</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
From Bias to Brilliance: The Impact of Artificial Intelligence Usage on Recruitment Biases in China
Popis výsledku v původním jazyce
In the rapidly evolving landscape of human resources and talent acquisition, the impact of the usage of artificial intelligence (hereafter, AI) on recruitment biases has emerged as a pivotal and transformative subject of study. Therefore, this study aims to critically evaluate the impact of AI usage on recruitment biases, particularly in the context of China. The data were gathered through a survey of 423 respondents working in the manufacturing sector. We use a cross-sectional dataset and various diagnostics (i.e., reliability and collinearity tests). The empirical findings using multivariate regression techniques suggested that Al usage is reshaping the recruitment process by offering innovative solutions to tackle biases that have pervaded the hiring process for years. However, human involvement is indispensable in the recruitment process, alongside the use of AI. Although the use of AI can efficiently handle tasks such as resume screening and data analysis, human judgment brings essential qualities to the hiring process. Human recruiters possess the ability to assess a candidate's soft skills, cultural fit, and emotional intelligence, as these qualities are challenging for AI to comprehend. The policy implications of the study recommend that by combining the strengths of AI efficiency with human insight, organizations can create a recruitment process that is not only objective and efficient but also considerate, ethical, and aligned with the values and goals of the company.
Název v anglickém jazyce
From Bias to Brilliance: The Impact of Artificial Intelligence Usage on Recruitment Biases in China
Popis výsledku anglicky
In the rapidly evolving landscape of human resources and talent acquisition, the impact of the usage of artificial intelligence (hereafter, AI) on recruitment biases has emerged as a pivotal and transformative subject of study. Therefore, this study aims to critically evaluate the impact of AI usage on recruitment biases, particularly in the context of China. The data were gathered through a survey of 423 respondents working in the manufacturing sector. We use a cross-sectional dataset and various diagnostics (i.e., reliability and collinearity tests). The empirical findings using multivariate regression techniques suggested that Al usage is reshaping the recruitment process by offering innovative solutions to tackle biases that have pervaded the hiring process for years. However, human involvement is indispensable in the recruitment process, alongside the use of AI. Although the use of AI can efficiently handle tasks such as resume screening and data analysis, human judgment brings essential qualities to the hiring process. Human recruiters possess the ability to assess a candidate's soft skills, cultural fit, and emotional intelligence, as these qualities are challenging for AI to comprehend. The policy implications of the study recommend that by combining the strengths of AI efficiency with human insight, organizations can create a recruitment process that is not only objective and efficient but also considerate, ethical, and aligned with the values and goals of the company.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT
ISSN
0018-9391
e-ISSN
1558-0040
Svazek periodika
71
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
14155-14167
Kód UT WoS článku
001300990700006
EID výsledku v databázi Scopus
2-s2.0-85201305895