ON CONVOLUTION OF GENERALIZED REPUNITS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F12%3A50000604" target="_blank" >RIV/62690094:18470/12:50000604 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.ijpam.eu/contents/2012-79-3/index.html" target="_blank" >http://www.ijpam.eu/contents/2012-79-3/index.html</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ON CONVOLUTION OF GENERALIZED REPUNITS
Popis výsledku v původním jazyce
The paper concentrate on properties of the generalized repunits Rn(k), where k is any nonnegative integer and n is any positive integer greater than 1. A repunit Rn is any integer written in decimal form as a string of 1´s. The term repunit was coined byBeiler in 1966. The great effort was devoted to testing of primality and finding all their prime factors. Snyder in 1982 extended the notation repunit to one in which for some integer b> 3. They are called as generalized repunits or repunits to base b and consist of a string of 1´s when written in base b. Some facts on the divisibility and primality of Rn(b) were found by Dubner in 2002 and Jaroma in 2007. In this paper some results on congruences of generalized repunits are stated. Further the generating function for generalized repunits is found, some relations for them are proved using this generating function and m-fold convolution formula is derived.
Název v anglickém jazyce
ON CONVOLUTION OF GENERALIZED REPUNITS
Popis výsledku anglicky
The paper concentrate on properties of the generalized repunits Rn(k), where k is any nonnegative integer and n is any positive integer greater than 1. A repunit Rn is any integer written in decimal form as a string of 1´s. The term repunit was coined byBeiler in 1966. The great effort was devoted to testing of primality and finding all their prime factors. Snyder in 1982 extended the notation repunit to one in which for some integer b> 3. They are called as generalized repunits or repunits to base b and consist of a string of 1´s when written in base b. Some facts on the divisibility and primality of Rn(b) were found by Dubner in 2002 and Jaroma in 2007. In this paper some results on congruences of generalized repunits are stated. Further the generating function for generalized repunits is found, some relations for them are proved using this generating function and m-fold convolution formula is derived.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International journal of pure and applied mathematics
ISSN
1311-8080
e-ISSN
—
Svazek periodika
79
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
BG - Bulharská republika
Počet stran výsledku
6
Strana od-do
493-498
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—