ON CONVOLUTION OF SOME TYPE OF THE NUMBERS CONNECTED WITH GENERALIZED REPUNITS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F13%3A50001457" target="_blank" >RIV/62690094:18470/13:50001457 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.ijpam.eu/contents/2013-82-4/10/10.pdf" target="_blank" >http://www.ijpam.eu/contents/2013-82-4/10/10.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12732/ijpam.v82i4.10" target="_blank" >10.12732/ijpam.v82i4.10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ON CONVOLUTION OF SOME TYPE OF THE NUMBERS CONNECTED WITH GENERALIZED REPUNITS
Popis výsledku v původním jazyce
The term repunit was coined by Beiler in 1966. A repunit Rn is any integer written in decimal form as a string of 1?s. The numbers 1, 11, 111, 1111, 11111, etc., are examples of repunits. Thus repunits have the form Rn = (10^n-1)/9 . The great effort wasdevoted to searching of repunit primes, thus such primes which are any repunits and they are also prime numbers. Snyder extended the notation repunit to one in which for some integer b >= 2 by this way Rn(b) = (b^n-1)/ (b-1). They are called as generalized repunits or repunits to base b and consist of a string of 1?s when written in base b. In this paper we will investigate a generalization of generalized repunits Rn(k+1), which are created by subtracting the linear term in (k+1)^n and dividing by thetrivial divisor k^2, thus Jn(k) = ((k + 1)^n - nk - 1)/k^2. In this paper some results about divisibility of Jn(k) are stated. Further the generating function and a m-fold convolution formula for the numbers Jn(k) is found.
Název v anglickém jazyce
ON CONVOLUTION OF SOME TYPE OF THE NUMBERS CONNECTED WITH GENERALIZED REPUNITS
Popis výsledku anglicky
The term repunit was coined by Beiler in 1966. A repunit Rn is any integer written in decimal form as a string of 1?s. The numbers 1, 11, 111, 1111, 11111, etc., are examples of repunits. Thus repunits have the form Rn = (10^n-1)/9 . The great effort wasdevoted to searching of repunit primes, thus such primes which are any repunits and they are also prime numbers. Snyder extended the notation repunit to one in which for some integer b >= 2 by this way Rn(b) = (b^n-1)/ (b-1). They are called as generalized repunits or repunits to base b and consist of a string of 1?s when written in base b. In this paper we will investigate a generalization of generalized repunits Rn(k+1), which are created by subtracting the linear term in (k+1)^n and dividing by thetrivial divisor k^2, thus Jn(k) = ((k + 1)^n - nk - 1)/k^2. In this paper some results about divisibility of Jn(k) are stated. Further the generating function and a m-fold convolution formula for the numbers Jn(k) is found.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International journal of pure and applied mathematics
ISSN
1311-8080
e-ISSN
—
Svazek periodika
82
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
BG - Bulharská republika
Počet stran výsledku
7
Strana od-do
615-621
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—