Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Prediction of population with Alzheimer's disease in the European Union using a system dynamics model

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F16%3A50004713" target="_blank" >RIV/62690094:18470/16:50004713 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62690094:18450/16:50004713

  • Výsledek na webu

    <a href="https://www.dovepress.com/prediction-of-population-with-alzheimeratildecentiumliquestfrac12iumli-peer-reviewed-fulltext-article-NDT" target="_blank" >https://www.dovepress.com/prediction-of-population-with-alzheimeratildecentiumliquestfrac12iumli-peer-reviewed-fulltext-article-NDT</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2147/NDT.S107969" target="_blank" >10.2147/NDT.S107969</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Prediction of population with Alzheimer's disease in the European Union using a system dynamics model

  • Popis výsledku v původním jazyce

    Introduction: Alzheimer's disease (AD) is a slowly progressing neurodegenerative brain disease with irreversible brain effects; it is the most common cause of dementia. With increasing age, the probability of suffering from AD increases. In this research, population growth of the European Union (EU) until the year 2080 and the number of patients with AD are modeled. Aim: The aim of this research is to predict the spread of AD in the EU population until year 2080 using a computer simulation. Methods: For the simulation of the EU population and the occurrence of AD in this population, a system dynamics modeling approach has been used. System dynamics is a useful and effective method for the investigation of complex social systems. Over the past decades, its applicability has been demonstrated in a wide variety of applications. In this research, this method has been used to investigate the growth of the EU population and predict the number of patients with AD. The model has been calibrated on the population prediction data created by Eurostat. Results: Based on data from Eurostat, the EU population until year 2080 has been modeled. In 2013, the population of the EU was 508 million and the number of patients with AD was 7.5 million. Based on the prediction, in 2040, the population of the EU will be 524 million and the number of patients with AD will be 13.1 million. By the year 2080, the EU population will be 520 million and the number of patients with AD will be 13.7 million. Conclusion: System dynamics modeling approach has been used for the prediction of the number of patients with AD in the EU population till the year 2080. These results can be used to determine the economic burden of the treatment of these patients. With different input data, the simulation can be used also for the different regions as well as for different noncontagious disease predictions.

  • Název v anglickém jazyce

    Prediction of population with Alzheimer's disease in the European Union using a system dynamics model

  • Popis výsledku anglicky

    Introduction: Alzheimer's disease (AD) is a slowly progressing neurodegenerative brain disease with irreversible brain effects; it is the most common cause of dementia. With increasing age, the probability of suffering from AD increases. In this research, population growth of the European Union (EU) until the year 2080 and the number of patients with AD are modeled. Aim: The aim of this research is to predict the spread of AD in the EU population until year 2080 using a computer simulation. Methods: For the simulation of the EU population and the occurrence of AD in this population, a system dynamics modeling approach has been used. System dynamics is a useful and effective method for the investigation of complex social systems. Over the past decades, its applicability has been demonstrated in a wide variety of applications. In this research, this method has been used to investigate the growth of the EU population and predict the number of patients with AD. The model has been calibrated on the population prediction data created by Eurostat. Results: Based on data from Eurostat, the EU population until year 2080 has been modeled. In 2013, the population of the EU was 508 million and the number of patients with AD was 7.5 million. Based on the prediction, in 2040, the population of the EU will be 524 million and the number of patients with AD will be 13.1 million. By the year 2080, the EU population will be 520 million and the number of patients with AD will be 13.7 million. Conclusion: System dynamics modeling approach has been used for the prediction of the number of patients with AD in the EU population till the year 2080. These results can be used to determine the economic burden of the treatment of these patients. With different input data, the simulation can be used also for the different regions as well as for different noncontagious disease predictions.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neuropsychiatric disease and treatment

  • ISSN

    1178-2021

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    June

  • Stát vydavatele periodika

    NZ - Nový Zéland

  • Počet stran výsledku

    10

  • Strana od-do

    1589-1598

  • Kód UT WoS článku

    000378793800002

  • EID výsledku v databázi Scopus