Non-Weyl Microwave Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50015530" target="_blank" >RIV/62690094:18470/19:50015530 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevLett.122.140503" target="_blank" >https://doi.org/10.1103/PhysRevLett.122.140503</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevLett.122.140503" target="_blank" >10.1103/PhysRevLett.122.140503</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non-Weyl Microwave Graphs
Popis výsledku v původním jazyce
One of the most important characteristics of a quantum graph is the average density of resonances, rho = (L/pi), where L denotes the length of the graph. This is a very robust measure. It does not depend on the number of vertices in a graph and holds also for most of the boundary conditions at the vertices. Graphs obeying this characteristic are called Weyl graphs. Using microwave networks that simulate quantum graphs we show that there exist graphs that do not adhere to this characteristic. Such graphs are called non-Weyl graphs. For standard coupling conditions we demonstrate that the transition from a Weyl graph to a non-Weyl graph occurs if we introduce a balanced vertex. A vertex of a graph is called balanced if the numbers of infinite leads and internal edges meeting at a vertex are the same. Our experimental results confirm the theoretical predictions of [E. B. Davies and A. Pushnitski, Analysis and PDE 4, 729 (2011)] and are in excellent agreement with the numerical calculations yielding the resonances of the networks.
Název v anglickém jazyce
Non-Weyl Microwave Graphs
Popis výsledku anglicky
One of the most important characteristics of a quantum graph is the average density of resonances, rho = (L/pi), where L denotes the length of the graph. This is a very robust measure. It does not depend on the number of vertices in a graph and holds also for most of the boundary conditions at the vertices. Graphs obeying this characteristic are called Weyl graphs. Using microwave networks that simulate quantum graphs we show that there exist graphs that do not adhere to this characteristic. Such graphs are called non-Weyl graphs. For standard coupling conditions we demonstrate that the transition from a Weyl graph to a non-Weyl graph occurs if we introduce a balanced vertex. A vertex of a graph is called balanced if the numbers of infinite leads and internal edges meeting at a vertex are the same. Our experimental results confirm the theoretical predictions of [E. B. Davies and A. Pushnitski, Analysis and PDE 4, 729 (2011)] and are in excellent agreement with the numerical calculations yielding the resonances of the networks.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical review letters
ISSN
0031-9007
e-ISSN
—
Svazek periodika
122
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
"140503-1"-"140503-5"
Kód UT WoS článku
000464754700004
EID výsledku v databázi Scopus
2-s2.0-85064256637