SIMPLEST GRAPHS WITH SMALL EDGES: ASYMPTOTICS FOR RESOLVENTS AND HOLOMORPHIC DEPENDENCE OF SPECTRUM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50017090" target="_blank" >RIV/62690094:18470/19:50017090 - isvavai.cz</a>
Výsledek na webu
<a href="http://matem.anrb.ru/sites/default/files/files/vupe42/Borisov.pdf" target="_blank" >http://matem.anrb.ru/sites/default/files/files/vupe42/Borisov.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13108/2019-11-2-56" target="_blank" >10.13108/2019-11-2-56</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SIMPLEST GRAPHS WITH SMALL EDGES: ASYMPTOTICS FOR RESOLVENTS AND HOLOMORPHIC DEPENDENCE OF SPECTRUM
Popis výsledku v původním jazyce
In the work we consider a simplest graph formed by two finite edges and a small edge coupled at a common vertex. The length of the small edge serves as a small parameter. On such graph, we consider the Schrodinger operator with the Kirchoff condition at the internal vertex, the Dirichlet condition on the boundary vertices of finite edges and the Dirichlet or Neumann condition on the boundary vertex of the small edge. We show that such operator converges to a Schrodinger operator on the graph without the small edge in the norm resolvent sense; at the internal vertex one has to impose the Dirichlet condition if the same was on the boundary vertex of the small edge. If the boundary vertex was subject to the Neumann condition, the internal vertex keeps the Kirchoff condition but the coupling constant can change. The main obtained result for the resolvents is the two-terms asymptotics for their resolvents and an estimate for the error term. The second part of the work is devoted to studying the dependence of the eigenvalues on the small parameter. Despite the graph is perturbed singularly, the eigenvalues are holomorphic in the small parameter and are represented by convergent series. We also find out that under the perturbation, there can be stable eigenvalues independent of the parameter. We provide a criterion determining the existence of such eigenvalues. For varying eigenvalues we find the leading terms of their Taylor series.
Název v anglickém jazyce
SIMPLEST GRAPHS WITH SMALL EDGES: ASYMPTOTICS FOR RESOLVENTS AND HOLOMORPHIC DEPENDENCE OF SPECTRUM
Popis výsledku anglicky
In the work we consider a simplest graph formed by two finite edges and a small edge coupled at a common vertex. The length of the small edge serves as a small parameter. On such graph, we consider the Schrodinger operator with the Kirchoff condition at the internal vertex, the Dirichlet condition on the boundary vertices of finite edges and the Dirichlet or Neumann condition on the boundary vertex of the small edge. We show that such operator converges to a Schrodinger operator on the graph without the small edge in the norm resolvent sense; at the internal vertex one has to impose the Dirichlet condition if the same was on the boundary vertex of the small edge. If the boundary vertex was subject to the Neumann condition, the internal vertex keeps the Kirchoff condition but the coupling constant can change. The main obtained result for the resolvents is the two-terms asymptotics for their resolvents and an estimate for the error term. The second part of the work is devoted to studying the dependence of the eigenvalues on the small parameter. Despite the graph is perturbed singularly, the eigenvalues are holomorphic in the small parameter and are represented by convergent series. We also find out that under the perturbation, there can be stable eigenvalues independent of the parameter. We provide a criterion determining the existence of such eigenvalues. For varying eigenvalues we find the leading terms of their Taylor series.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
UFA MATHEMATICAL JOURNAL
ISSN
2074-1863
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
RU - Ruská federace
Počet stran výsledku
15
Strana od-do
56-70
Kód UT WoS článku
000511171600004
EID výsledku v databázi Scopus
—