Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Polynomial potentials and coupled quantum dots in two and three dimensions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50016874" target="_blank" >RIV/62690094:18470/20:50016874 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61389005:_____/20:00524208

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0003491620300944?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0003491620300944?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aop.2020.168161" target="_blank" >10.1016/j.aop.2020.168161</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Polynomial potentials and coupled quantum dots in two and three dimensions

  • Popis výsledku v původním jazyce

    Polynomial potentials V(x) = x(4) + O(x(2)) and V(x) = x(6) + O(x(4)) were introduced, in the Thom&apos;s purely geometric classification of bifurcations, as the benchmark models of the so called cusp catastrophes and of the so called butterfly catastrophes, respectively. Due to their asymptotically confining property, these two potentials are exceptional, viz., able to serve similar purposes even after quantization, in the presence of tunneling. In this paper the idea is generalized to apply also to quantum systems in two and three dimensions. Two related technical obstacles are addressed, both connected with the non-separability of the underlying partial differential Schrodinger equations. The first one [viz., the necessity of a non-numerical localization of the extremes (i.e., of the minima and maxima) of V(x, y,...)] is resolved via an ad hoc reparametrization of the coupling constants. The second one [viz., the necessity of explicit construction of the low lying bound states.(x, y,...)] is circumvented by the restriction of attention to the dynamical regime in which the individual minima of V(x, y,...) are well separated, with the potential being locally approximated by the harmonic oscillator wells simulating a coupled system of quantum dots (a.k.a. an artificial molecule). Subsequently it is argued that the measurable characteristics (and, in particular, the topologically protected probability-density distributions) could bifurcate in specific evolution scenarios called relocalization catastrophes.

  • Název v anglickém jazyce

    Polynomial potentials and coupled quantum dots in two and three dimensions

  • Popis výsledku anglicky

    Polynomial potentials V(x) = x(4) + O(x(2)) and V(x) = x(6) + O(x(4)) were introduced, in the Thom&apos;s purely geometric classification of bifurcations, as the benchmark models of the so called cusp catastrophes and of the so called butterfly catastrophes, respectively. Due to their asymptotically confining property, these two potentials are exceptional, viz., able to serve similar purposes even after quantization, in the presence of tunneling. In this paper the idea is generalized to apply also to quantum systems in two and three dimensions. Two related technical obstacles are addressed, both connected with the non-separability of the underlying partial differential Schrodinger equations. The first one [viz., the necessity of a non-numerical localization of the extremes (i.e., of the minima and maxima) of V(x, y,...)] is resolved via an ad hoc reparametrization of the coupling constants. The second one [viz., the necessity of explicit construction of the low lying bound states.(x, y,...)] is circumvented by the restriction of attention to the dynamical regime in which the individual minima of V(x, y,...) are well separated, with the potential being locally approximated by the harmonic oscillator wells simulating a coupled system of quantum dots (a.k.a. an artificial molecule). Subsequently it is argued that the measurable characteristics (and, in particular, the topologically protected probability-density distributions) could bifurcate in specific evolution scenarios called relocalization catastrophes.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ANNALS OF PHYSICS

  • ISSN

    0003-4916

  • e-ISSN

  • Svazek periodika

    416

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    "Article Number: 168161"

  • Kód UT WoS článku

    000528197500005

  • EID výsledku v databázi Scopus

    2-s2.0-85082872151