Polynomial potentials and coupled quantum dots in two and three dimensions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50016874" target="_blank" >RIV/62690094:18470/20:50016874 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61389005:_____/20:00524208
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0003491620300944?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0003491620300944?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aop.2020.168161" target="_blank" >10.1016/j.aop.2020.168161</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Polynomial potentials and coupled quantum dots in two and three dimensions
Popis výsledku v původním jazyce
Polynomial potentials V(x) = x(4) + O(x(2)) and V(x) = x(6) + O(x(4)) were introduced, in the Thom's purely geometric classification of bifurcations, as the benchmark models of the so called cusp catastrophes and of the so called butterfly catastrophes, respectively. Due to their asymptotically confining property, these two potentials are exceptional, viz., able to serve similar purposes even after quantization, in the presence of tunneling. In this paper the idea is generalized to apply also to quantum systems in two and three dimensions. Two related technical obstacles are addressed, both connected with the non-separability of the underlying partial differential Schrodinger equations. The first one [viz., the necessity of a non-numerical localization of the extremes (i.e., of the minima and maxima) of V(x, y,...)] is resolved via an ad hoc reparametrization of the coupling constants. The second one [viz., the necessity of explicit construction of the low lying bound states.(x, y,...)] is circumvented by the restriction of attention to the dynamical regime in which the individual minima of V(x, y,...) are well separated, with the potential being locally approximated by the harmonic oscillator wells simulating a coupled system of quantum dots (a.k.a. an artificial molecule). Subsequently it is argued that the measurable characteristics (and, in particular, the topologically protected probability-density distributions) could bifurcate in specific evolution scenarios called relocalization catastrophes.
Název v anglickém jazyce
Polynomial potentials and coupled quantum dots in two and three dimensions
Popis výsledku anglicky
Polynomial potentials V(x) = x(4) + O(x(2)) and V(x) = x(6) + O(x(4)) were introduced, in the Thom's purely geometric classification of bifurcations, as the benchmark models of the so called cusp catastrophes and of the so called butterfly catastrophes, respectively. Due to their asymptotically confining property, these two potentials are exceptional, viz., able to serve similar purposes even after quantization, in the presence of tunneling. In this paper the idea is generalized to apply also to quantum systems in two and three dimensions. Two related technical obstacles are addressed, both connected with the non-separability of the underlying partial differential Schrodinger equations. The first one [viz., the necessity of a non-numerical localization of the extremes (i.e., of the minima and maxima) of V(x, y,...)] is resolved via an ad hoc reparametrization of the coupling constants. The second one [viz., the necessity of explicit construction of the low lying bound states.(x, y,...)] is circumvented by the restriction of attention to the dynamical regime in which the individual minima of V(x, y,...) are well separated, with the potential being locally approximated by the harmonic oscillator wells simulating a coupled system of quantum dots (a.k.a. an artificial molecule). Subsequently it is argued that the measurable characteristics (and, in particular, the topologically protected probability-density distributions) could bifurcate in specific evolution scenarios called relocalization catastrophes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ANNALS OF PHYSICS
ISSN
0003-4916
e-ISSN
—
Svazek periodika
416
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
"Article Number: 168161"
Kód UT WoS článku
000528197500005
EID výsledku v databázi Scopus
2-s2.0-85082872151