Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Eigenvalues bifurcating from the continuum in two-dimensional potentials generating non-Hermitian gauge fields

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50021135" target="_blank" >RIV/62690094:18470/23:50021135 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0003491623003007?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0003491623003007?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aop.2023.169498" target="_blank" >10.1016/j.aop.2023.169498</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Eigenvalues bifurcating from the continuum in two-dimensional potentials generating non-Hermitian gauge fields

  • Popis výsledku v původním jazyce

    It has been recently shown that complex two-dimensional (2D) potentials V-epsilon(x, y) = V(y+i epsilon eta(x)) can be used to emulate non-Hermitian matrix gauge fields in optical waveguides. Here x and y are the transverse coordinates, V(y) and eta(x) are real functions, epsilon &gt; 0 is a small parameter, and i is the imaginary unit. The real potential V(y) is required to have at least two discrete eigenvalues in the corresponding 1D Schrodinger operator. When both transverse directions are taken into account, these eigenvalues become thresholds embedded in the continuous spectrum of the 2D operator. Small nonzero e corresponds to a non-Hermitian perturbation which can result in a bifurcation of each threshold into an eigenvalue. Accurate analysis of these eigenvalues is important for understanding the behavior and stability of optical waves propagating in the artificial non-Hermitian gauge potential. Bifurcations of complex eigenvalues out of the continuum is the main object of the present study. Using recent mathematical results from the rigorous analysis of elliptic operators, we obtain simple asymptotic expansions in e that describe the behavior of bifurcating eigenvalues. The lowest threshold can bifurcate into a single eigenvalue, while every other threshold can bifurcate into a pair of complex eigenvalues. These bifurcations can be controlled by the Fourier transform of function eta(x) evaluated at certain isolated points of the reciprocal space. When the bifurcation does not occur, the continuous spectrum of 2D operator contains a quasi-bound-state which is characterized by a strongly localized central peak coupled to small-amplitude but nondecaying tails. The analysis is applied to the case examples of parabolic and double-well potentials V(y). In the latter case, the bifurcation of complex eigenvalues can be dampened if the two wells are widely separated.

  • Název v anglickém jazyce

    Eigenvalues bifurcating from the continuum in two-dimensional potentials generating non-Hermitian gauge fields

  • Popis výsledku anglicky

    It has been recently shown that complex two-dimensional (2D) potentials V-epsilon(x, y) = V(y+i epsilon eta(x)) can be used to emulate non-Hermitian matrix gauge fields in optical waveguides. Here x and y are the transverse coordinates, V(y) and eta(x) are real functions, epsilon &gt; 0 is a small parameter, and i is the imaginary unit. The real potential V(y) is required to have at least two discrete eigenvalues in the corresponding 1D Schrodinger operator. When both transverse directions are taken into account, these eigenvalues become thresholds embedded in the continuous spectrum of the 2D operator. Small nonzero e corresponds to a non-Hermitian perturbation which can result in a bifurcation of each threshold into an eigenvalue. Accurate analysis of these eigenvalues is important for understanding the behavior and stability of optical waves propagating in the artificial non-Hermitian gauge potential. Bifurcations of complex eigenvalues out of the continuum is the main object of the present study. Using recent mathematical results from the rigorous analysis of elliptic operators, we obtain simple asymptotic expansions in e that describe the behavior of bifurcating eigenvalues. The lowest threshold can bifurcate into a single eigenvalue, while every other threshold can bifurcate into a pair of complex eigenvalues. These bifurcations can be controlled by the Fourier transform of function eta(x) evaluated at certain isolated points of the reciprocal space. When the bifurcation does not occur, the continuous spectrum of 2D operator contains a quasi-bound-state which is characterized by a strongly localized central peak coupled to small-amplitude but nondecaying tails. The analysis is applied to the case examples of parabolic and double-well potentials V(y). In the latter case, the bifurcation of complex eigenvalues can be dampened if the two wells are widely separated.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10304 - Nuclear physics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Annals of Physics

  • ISSN

    0003-4916

  • e-ISSN

    1096-035X

  • Svazek periodika

    459

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    "Article Number: 169498"

  • Kód UT WoS článku

    001095602800001

  • EID výsledku v databázi Scopus

    2-s2.0-85174743214